MODERN™
OPERATING
SYSTEMS

Molle opemating hultithread
Eyptar ’.a EyaLem

¥ Deadlock }1

| £
balancing "1‘
Bue scream S0, oS

..-.F.;i-:'.;‘i.l- . _ﬁ_-e I}

4
& .
P

#
-,
» & "-..____' -,
T
achaduler

1 Owtrich
I" | mlgorithm

YVirtualization

INTRODUCTION

A modern computer consists of one or more processors, some main memory,
disks, printers, a keyboard, a mouse, a display, network interfaces, and various
other input/output devices. All in all, a complex system. If every application pro-
grammer had to understand how all these things work in detail, no code would
ever get written. Furthermore, managing all these components and using them
optimally is an exceedingly challenging job. For this reason, computers are
equipped with a layer of software called the operating system, whose job is to
provide user programs with a better, simpler, cleaner, model of the computer and
to handle managing all the resources just mentioned. These systems are the sub-
ject of this book.

Most readers will have had some experience with an operating system such as
Windows, Linux, FreeBSD, or Max OS X, but appearances can be deceiving. The
program that users interact with, usually called the shell when it is text based and
the GUI (Graphical User Interface)—which is pronounced ‘“gooey”— when it
uses icons, is actually not part of the operating system although it uses the operat-
ing system to get its work done.

A simple overview of the main components under discussion here is given in
Fig. 1-1. Here we see the hardware at the bottom. The hardware consists of chips,
boards, disks, a keyboard, a monitor, and similar physical objects. On top of the
hardware is the software. Most computers have two modes of operation: kernel
mode and user mode. The operating system is the most fundamental piece of soft-
ware and runs in kernel mode (also called supervisor mode). In this mode it has

1

2 INTRO@DUCTI®ON CHAP. 1

complete access to all the hardware and can execute any instruction the machine
is capable of executing. The rest of the software runs in user mode, in which only
a subset of the machine instructions is available. In particular, those instructions
that affect conwol of the machine or do I/O (Input/Output) are forbidden to user-
mode programs. We will come back to the difference between kernel mode and
user mode repeatedly throughout this book.

E-mail Music
Web reader player
browser j j
@0 o |
User mode
User interface program - Software
Kemel mode -{ Operating system

-

Figure 1-1. Where the operating system fits in.

The user interface program, shell or GUI, is the lowest level of user-mode
software, and allows the user to start other programs, such as a Web browser, e-
mail reader, or music player. These programs, too, make heavy use of the operat-
ing system.

The placement of the operating system is shown in Fig. 1-1. It runs on the
bare hardware and provides the base for all the other software.

An important distinction between the operating system and normal (user-
mode) software is that if a user does not like a particular e-mail reader, het is free
to get a different one or write his own if he so chooses; he is not free to write his
own clock interrupt handler, which is part of the operating system and is protected
by hardware against attempts by users to modify it.

This distinction, however, is sometimes blurred in embedded systems (which
may not have kernel mode) or interpreted systems (such as Java-based operating
systems that use interpretation, not hardware, to separate the components).

Also, in many systems there are programs that run in user mode but which
help the operating system or perform privileged functions. For example, there is
often a program that allows users to change their passwords. This program is not
part of the operating system and does not run in kernel mode, but it clearly carries
out a sensitive function and has to be protected in a special way. In some sys-
tems, this idea is carried to an extreme form, and pieces of what is traditionally

T “He” should be read as *‘he or she” throughout the book.

SEC. 1. WHAT IS AN @PERATING SYSTEM? 3

considered to be the eperating system (such as the file system) run in user space.
In such systems, it is difficult to draw a clear boundary. Everything running in
kemel mode is clearly part of the operating system, but some programs running
outside it are arguably also part of it, or at least closely associated with it.

Operating systems differ from user (i.e., application) programs in ways other
than where they reside. In particular, they are huge, complex, and long-lived.
The source code of an operating system like Linux or Windows is on the order of
five million lines of code. To conceive of what this means, think of printing out
five million lines in beok form, with 50 lines per page and 1000 pages per volume
(larger than this book). It would take 100 volumes to list an operating system of
this size—essentially an entire bookcase. Can you imagine getting a job maintain-
ing an operating system and on the first day having your boss bring you to a book
case with the code and say: “Go learn that.”” And this is only for the part that runs
in the kernel. User programs like the GUI, libraries, and basic application soft-
ware (things like Windows Explorer) can easily run to 10 or 20 times that amount.

It should be clear now why operating systems live a long time—they are very
hard to write, and having written one, the owner is loath to throw it out and start
again. Instead, they evolve over long periods of time. Windows 95/98/Me was
basically one operating system and Windows NT/2000/XP/Vista is a different
one. They look similar to the users because Microsoft made very sure that the user
interface of Windows 2000/XP was quite similar to the system it was replacing,
mostly Windows 8. Nevertheless, there were very good reasons why Microsoft
got rid of Windows 98 and we will come to these when we study Windows in de-
tail in Chap. 11.

The other main example we will use throughout this boek (besides Windows)
is UNIX and its variants and clones. It, too, has evolved over the years, with ver-
sions like System V, Solaris, and FreeBSD being derived from the original sys-
tem, whereas Linux is a fresh code base, although very closely modeled on UNIX
and highly compatible with it. We will use examples from UNIX throughout this
book and look at Linux in detail in Chap. 10.

In this chapter we will touch on a number of key aspects of operating systems,
briefly, including what they are, their history, what kinds are around, some of the
basic concepts, and their structure. We will come back to many of these impor-
tant topics in later chapters in more detail.

1.1 WHAT IS AN OPERATING SYSTEM?

It is hard to pin down what an operating system is other than saying it is the
software that runs in kermel mode—and even that is not always true. Part of the
problem is that operating systems perform two basically unrelated functions: pro-
viding application programmers (and application programs, naturally) a clean
abstract set of resources instecad of the messy hardware ones and managing these

4 INTRODUCTION CHAP. |

hardware resources. Depending on who is doing the talking, you might hear
mostly about one function or the other. Let us now look at both.

1.1.1 The Operating System as an Extended Machine

The architecture (instruction set, memory organization, I/O, and bus struc-
ture) of most computers at the machine language level is primitive and awkward
to program, especially for input/output. To make this point more concrete, con-
sider how floppy disk I/O is done using the NEC PD765 compatible controller
chips used on most Intel-based personal computers. (Threughout this book we
will use the terms “floppy disk” and “diskette” interchangeably.) We use the
floppy disk as an example, because, although it is obsolete, it is much simpler
than a modern hard disk. The PD765 has 16 commands, each specified by loading
between 1 and ® bytes into a device register. These commands are for reading and
writing data, moving the disk arm, and formatting tracks, as well as initializing,
sensing, resetting, and recalibrating the controller and the drives.

The most basic cemmands are read and write, each of which requires 13 pa-
rameters, packed into ® bytes. These parameters specify such items as the address
of the disk block to be read, the number of sectors per track, the recording mode
used on the physical medium, the intersector gap spacing, and what to do with a
deleted-data-address-mark. If you do not understand this mumbo jumbo, do not
worry; that is precisely the point—it is rather esoteric. When the operation is com-
pleted, the controller chip returns 23 status and crror ficlds packed into 7 bytes.
As if this were not enough, the floppy disk programmer must also be constantly
aware of whether the motor is on or off. If the motor is off, it must be turned on
(with a long startup delay) before data can be read or written. The motor cannot
be left on too long, however, or the floppy disk will wear out. The programmer is
thus forced to deal with the trade-off between long startup delays versus wearing
out floppy disks (and losing the data on them).

Without going into the real details, it should be clear that the average pro-
grammer probably dees not want to get too intimately involved with the pro-
gramming of floppy disks (or hard disks, which are worse). Instead, what the pro-
grammer wants is a simple, high-level abstraction to deal with. In the case of
disks, a typical abstraction would be that the disk contains a collection of named
files. Each file can be opened for reading or writing, then read or written, and fi-
nally closed. Details such as whether or not recording should use modificd fre-
quency modulation and what the current state of the motor is should not appear in
the abstraction presented to the application programmer.

Abstraction is the key to managing complexity. Good abstractions turn a
nearly impossible task into two manageable ones. The first one of these is defin-
ing and implementing the abstractions. The second one is using these abstractions
to solve the problem at hand. One abstraction that almost every computer user
understands is the file. It is a useful piece of information, such as a digital photo,

SEC. 1.1 WHAT IS AN OPERATING SYSTEM? S

saved e-mail message, or Web page. Dealing with photos, e-mails, and Web pages
1s easier than the details of disks, such as the floppy disk described above. The job
of the operating system is to create good abstractions and then implement and
manage the abstract objects thus created. In this book, we will talk a lot about ab-
stractions. They are one of the keys to understanding operating systems.

This point is so important that it is worth repeating in different words. With
all due respect to the industrial engineers who designed the Macintosh, hardware
is ugly. Real processors, memories, disks, and other devices are very complicated
and present difficult, awkward, idiosyncratic, and inconsistent interfaces to the
people who have to write software to use them. Sometimes this is due to the need
for backward compatibility with older hardware, sometimes due to a desire to
save money, but sometimes the hardware designers do not realize (or care) how
much trouble they are causing for the software. One of the major tasks of the op-
erating system is to hide the hardware and present programs (and their pro-
grammers) with nice, clean, elegant, consistent, abstractions to work with instead.
Operating systems turn the ugly into the beautiful, as shown in Fig. 1-2.

Application programs

-«— Beautiful interface

-— Ugly interface
Hardware

Figure 1-2. Operating systems turn ugly hardware into beautiful abstractions.

It should be noted that the operating system’s real customers are the applica-
tion programs (via the application programmers, of course). They are the ones
who deal directly with the operating system and its abstractions. In contrast, end
users deal with the abstractions provided by the user interface, either a command-
line shell or a graphical interface. While the abstractions at the user interface may
be similar to the ones provided by the operating system, this is not always the
case. To make this point clearer, consider the normal Windows desktop and the
line-oriented command prompt. Both are programs running on the Windows oper-
ating system and use the abstractions Windows provides, but they offer very dif-
ferent user interfaces. Similarly, a Linux user running Gnome or KDE sees a very
different interface than a Linux user working directly on top of the underlying
(text-oriented) X Window System, but the underlying operating system abstrac-
tions are the same in both cases.

6 INTRODUCTION CHAP. 1

In this book, we will study the abstractions provided to application programs
in great detail, but say rather little about user interfaces. That is a large and impor-
tant subject, but one only peripherally related to operating systems.

1.1.2 The Operating System as a Resource Manager

The concept of an operating system as primarily providing abstractions to ap-
plication programs is a top-down view. An alternative, bottom-up, view holds
that the operating system is there to manage all the pieces of a complex system.
Modern computers consist of processors, memories, timers, disks, mice, network
interfaces, printers, and a wide variety of other devices. In the alternative view,
the job of the operating system is to provide for an orderly and controlled alloca-
tion of the processors, memories, and I/O devices among the various programs
competing for them.

Modern operating systems allow multiple programs to run at the same time.
Imagine what would happen if three programs running on some computer all tried
to print their output simultaneously on the same printer. The first few lines of
printout might be from program 1, the next few from program 2, then some from
program 3, and so forth. The result would be chaos. The operating system can
bring order to the potential chaos by buffering all the output destined for the print-
er on the disk. When one program is finished, the operating system can then copy
its output from the disk file where it has been stored for the printer, while at the
same time the other program can continue generating more output, oblivious to
the fact that the output is not really going to the printer (yet).

When a computer (or network) has multiple users, the need for managing and
protecting the memory, I/O devices, and other resources is even greater, since the
users might otherwise interfere with one another. In addition, users often need to
share not only hardware, but information (files, databases, etc.) as well. In short,
this view of the operating system holds that its primary task is to keep track of
which programs are using which resource, to grant resource requests, to account
for usage, and to mediate conflicting requests from different programs and users.

Resource management includes multiplexing (sharing) resources in two dif-
ferent ways: in time and in space. When a resource is time multiplexed, different
programs or users take turns using it. First one of them gets to use the resource,
then another, and so on. For example, with only one CPU and multiple programs
that want to run on it, the operating system first allocates the CPU to one program,
then, after it has run long enough, another one gets to use the CPU, then another,
and then eventually the first one again. Determining how the resource is time mul-
tiplexed—who goes next and for how long—is the task of the operating system.
Another example of time multiplexing is sharing the printer. When multiple print
jobs are queued up for printing on a single printer, a decision has to be made
about which one is to be printed next.

SEC. 1. WHAT IS AN OPERATING SYSTEM? 7

The other kind of multiplexing is space multiplexing. Instead of the customers
taking turns, each one gets part of the resource. For example, main memory is
normally divided up among several running programs, so each one can be resident
at the same time (for example, in order to take tums using the CPU). Assuming
there is enough memory to hold multiple programs, it is more efficient to hold
several programs in memory at once rather than give one of them all of it, espe-
cially if it only needs a small fraction of the total. Of course, this raises issues of
faimess, protection, and so on, and it is up to the operating system to solve them.
Another resource that is space multiplexed is the (hard) disk. In many systems a
single disk can hold files from many users at the same time. Allocating disk space
and keeping track of who is using which disk blocks is a typical operating system
resource management task.

1.2 HISTORY OF OPERATING SYSTEMS

Operating systems have been evolving through the years. In the following
sections we will briefly look at a few of the highlights. Since operating systems
have historically been closely tied to the architecture of the computers on which
they run, we will look at successive generations of computers to see what their op-
erating systems were like. This mapping of operating system generations to com-
puter generations is crude, but it does provide some structure where there would
otherwise be none.

The progression given below is largely chronological, but it has been a bumpy
ride. Each development did not wait until the previous one nicely finished before
getting started. There was a lot of overlap, not to mention many false starts and
dcad ends. Take this as a guide, not as the last word.

The first true digital computer was designed by the English mathematician
Charles Babbage (1792-1871). Although Babbage spent most of his life and for-
tune trying to build his “analytical engine,” he never got it working properly be-
cause it was purely mechanical, and the technology of his day could not produce
the required wheels, gears, and cogs to the high precision that he needed. Need-
less to say, the analytical engine did not have an operating system.

As an interesting historical aside, Babbage realized that he would need soft-
ware for his analytical engine, so he hired a young woman named Ada Lovelace,
who was the daughter of the famed British poet Lord Byron, as the world’s first
programmer. The programming language Ada® is named after her.

1.2.1 The First Generation (1945-S85) Vacuum Tubes

After Babbage’s unsuccessful efforts, little progress was made in constructing
digital computers until World War II, which stimulated an explosion of activity.
Prof. John Atanasoff and his graduate student Clifford Berry built what is now

8 INTRODUCTION CHAP. 1

regarded as the first functioning digital computer at lowa State University. It used
300 vacuum tubes. At about the same time, Konrad Zuse in Berlin built the Z3
computer out of relays. In 1944, the Colossus was built by a group at Bletchley
Park, England, the Mark I was built by Howard Aiken at Harvard, and the ENIAC
was built by William Mauchley and his graduate student J. Presper Eckert at the
University of Pennsylvania. Some were binary, some used vacuum tubes, some
were programmable, but all were very primitive and took seconds to perform even
the simplest calculation.

In these early days, a single group of people (usually engineers) designed,
built, programmed, operated, and maintained each machine. All programming was
done in absolute machine language, or even worse yet, by wiring up electrical cir-
cuits by connecting thousands of cables to plugboards to control the machine’s
basic functions. Programming languages were unknown (even assembly language
was unknown). Operating systems were unheard of. The usual mode of operation
was for the programmer to sign up for a block of time using the signup sheet on
the wall, then come down to the machine room, insert his or her plugboard into
the computer, and spend the next few hours hoping that none of the 20,000 or so
vacuum tubes would burn out during the run. Virtually all the problems were sim-
ple straightforward numerical calculations, such as grinding out tables of sines,
cosines, and logarithms.

By the early 1950s, the routine had improved somewhat with the introduction
of punched cards. It was now possible to write programs on cards and read them
in instcad of using plugboards; otherwise, the procedure was the same.

1.2.2 The Second Generation (1955-65) Transistors and Batch Systems

The introduction of the transistor in the mid-1950s changed the picture radi-
cally. Computers became reliable enough that they could be manufactured and
sold to paying customers with the expectation that they would continue to func-
tion long enough to get some useful work done. For the first time, there was a
clear separation between designers, builders, operators, programmers, and mainte-
nance personnel.

These machines, now called mainframes, were locked away in specially air-
conditioned computer rooms, with staffs of professional operators to run them.
Only large corporations or major government agencies or universities could afford
the multimillion-dollar price tag. To run a job (i.e., a program or set of pro-
grams), a programmer would first write the program on paper (in FORTRAN or
assembler), then punch it on cards. He would then bring the card deck down to
the input room and hand it to one of the operators and go drink coffee until the
output was ready.

When the computer finished whatever job it was currently running, an opera-
tor would go over to the printer and tear off the output and carry it over to the out-
put room, so that the programmer could collect it later. Then he would take one of

SEC. 1.2 HISTORY OF OPERATING SYSTEMS 9

the card decks that had been brought from the input room and read it in. If the
FORTRAN compiler was needed, the operator would have to get it from a file
cabinet and read it in. Much computer time was wasted while operators were
walking around the machine room.

Given the high cost of the equipment, it is not surprising that people quickly
looked for ways to reduce the wasted time. The solution generally adopted was
the batch system. The idea behind it was to collect a tray full of jobs in the input
room and then read them onto a magnetic tape using a small (relatively) inexpen-
sive computer, such as the IBM 1401, which was quite good at reading cards,
copying tapes, and printing output, but not at all good at numerical calculations.
Other, much more expensive machines, such as the IBM 7094, were used for the
real computing. This situation is shown in Fig. 1-3.

diive Input tape Output
Card tape —
reader [s[Fy ol 8@ e o|lF-3|| Printer
a1) | M
— |:|| L.} 0 " o ! i} L..J
(U (i (T
1401 7094 1401

(@) (b) (c) (d) (e) ()

Figure 1-3. An early batch system. (a) Programmers bring cards to 1481. (b)
1401 reads batch of jobs onto tape. (c) Operator carries input tape to 7094. (d)
7894 does computing. (e) Operator carries output tape to 1401. (f) 1401 prints
output.

After about an hour of collecting a batch of jobs, the cards were read onto a
magnetic tape, which was carried into the machine room, where it was mounted
on a tape drive. The operator then loaded a special program (the ancestor of
today’s operating system), which read the first job from tape and ran it. The out-
put was written onto a second tape, instead of being printed. After each job fin-
ished, the operating system automatically read the next job from the tape and
began running it. When the whole batch was done, the operator removed the input
and output tapes, replaced the input tape with the next batch, and brought the out-
put tape to a 1401 for printing off line (i.e., not connected to the main computer).

The structure of a typical input job is shown in Fig. 1-4. It started out with a
$JOB card, specifying the maximum run time in minutes, the account number to
be charged, and the programmer’s name. Then came a SFORTRAN card, telling
the operating system to load the FORTRAN compiler from the system tape. It
was directly followed by the program to be compiled, and then a SLOAD card, di-
recting the operating system to load the object program just compiled. (Compiled

10 INTRODUCTION CHAP. 1

programs were often written on scratch tapes and had to be loaded explicitly.)
Next came the SRUN card, telling the operating system to run the program with
the data following it. Finally, the SEND card marked the end of the job. These
primitive control cards were the forerunners of modern shells and command-line

interpreters.
/ $END
P

_~——Data for program
G

$JOB, 10,6610802, MARVIN TANENBAUM 7

Figure 1-4. Structure of a typical FMS job.

Large second-generation computers were used mostly for scientific and en-
gineering calculations, such as solving the partial differential equations that often
occur in physics and engineering. They were largely programmed in FORTRAN
and assembly language. Typical operating systems were FMS (the Fortrainn Moni-
tor System) and IBSYS, IBM’s operating system for the 7094.

1.2.3 The Third Generation (1965-1980) ICs and Multiprogramming

By the early 1960s, most computer manufacturers had two distinct, incompati-
ble, product lines. On the one hand there were the word-oriented, large-scale
scientific computers, such as the 7094, which were used for numerical calcula-
tions in science and engineering. On the other hand, there were the character-
oriented, commercial computers, such as the 1401, which were widely used for
tape sorting and printing by banks and insurance companies.

Developing and maintaining two completely different product lines was an
expensive proposition for the manufacturers. In addition, many new computer
customers initially needed a small machine but later outgrew it and wanted a
bigger machine that would run all their old programs, but faster.

SEE:. 12 HISTORY @F ®@PERATING SYSTEMS 11

IBM attempted to solve both of these problems at a single stroke by introduc-
ing the System/360. The 360 was a series of software-compatible machines rang-
ing from 1401-sized to much more powerful than the 7094. The machines dif-
fered only in price and performance (maximum memory, processor speed, number
of I/O devices permitted, and so forth). Since all the machines had the same ar-
chitecture and instruction set, programs written for one machine could run on all
the others, at least in theory. Furthermore, the 360 was designed to handle both
scientific (i.e., numerical) and commercial computing. Thus a single family of
machines could satisfy the needs of all customers. In subsequent years, IBM has
come out with compatible successors to the 360 line, using more modern technol-
ogy, known as the 370, 4300, 3080, and 3090. The zSeries is the most recent des-
cendant of this line, although it has diverged considerably from the original.

The IBM 360 was the first major computer line to use (small-scale) ICs
(Integrated Circuits) thus providing a major price/performance advantage over
the second-generation machines, which were built up from individual transistors.
It was an immediate success, and the idea of a family of compatible computers
was soon adopted by all the other major manufacturers. The descendants of these
machines are still in use at computer centers today. Nowadays they are often used
for managing huge databases (e.g., for airline reservation systems) or as servers
for World Wide Web sites that must process thousands of requests per second.

The greatest strength of the “one family’’ idea was simultaneously its greatest
weakness. The intention was that all software, including the operating system,
0S/360 had to work on all models. It had to run on small systems, which often
just replaced 1401s for copying cards to tape, and on very large systems, which
often replaced 7094s for doing weather forecasting and other heavy computing. It
had to be good on systems with few peripherals and on systems with many peri-
pherals. It had to work in commercial environments and in scientific environ-
ments. Above all, it had to be efficient for all of these different uses.

There was no way that IBM (or anybody else) could write a piece of software
to meet all those conflicting requirements. The result was an enormous and
extraordinarily complex operating system, probably two to three orders of magni-
tude larger than FMS. It consisted of millions of lines of assembly language writ-
ten by thousands of programmers, and contained thousands upon thousands of
bugs, which necessitated a continuous stream of new releases in an attempt to cor-
rect them. Each new release fixed some bugs and introduced new ones, so the
number of bugs probably remained constant in time.

One of the designers of OS/360, Fred Brooks, subsequently wrote a witty and
incisive book (Brooks, 1996) describing his experiences with OS/360. While it
would be impossible to summarize the book here, suffice it to say that the cover
shows a herd of prehistoric beasts stuck in a tar pit. The cover of Silberschatz et
al. (2005) makes a similar point about operating systems being dinosaurs.

Despite its enormous size and problems, OS/360 and the similar third-
generation operating systems produced by other computer manufacturers actually

12 INTRODUCTION CHAP. 1

satisfied most of their customers reasonably well. They also popularized several
key techniques absent in second-generation operating systems. Probably the most
important of these was multiprogramming. On the 7094, when the current job
paused to wait for a tape or other I/O operation to complete, the CPU simply sat
idle until the /O finished. With heavily CPU-bound scientific calculations, /O is
infrequent, so this wasted time is not significant. With commercial data proc-
essing, the I/O wait time can often be 80 or 90 percent of the total time, so some-
thing had to be done to avoid having the (expensive) CPU be idle so much.

The solution that evolved was to partition memory into several pieces, with a
different job in each partition, as shown in Fig. 1-5. While one job was waiting
for I/O to complete, another job could be using the CPU. If enough jobs could be
held in main memory at once, the CPU could be kept busy nearly 100 percent of
the time. Having multiple jobs safely in memory at once requires special hardware
to protect each job against snooping and mischief by the other ones, but the 360
and other third-generation systems were equipped with this hardware.

Job3
Job2
Memory
Job 1 partitions
Operating
system

Figure 1-5. A multiprogramming system with three jobs in memory.

Another major feature present in third-generation operating systems was the
ability to read jobs from cards onto the disk as soon as they were brought to the
computer room. Then, whenever a running job finished, the operating system
could load a new job from the disk into the now-empty partition and run it. This
technique is called spooling (from Simultaneous Peripheral Operation On
Line) and was also used for output. With spooling, the 1401s were no longer
needed, and much carrying of tapes disappeared.

Although third-generation operating systems were well suited for big scien-
titic calculations and massive commercial data processing runs, they were still
basically batch systems. Many programmers pined for the first-generation days
when they had the machine all to themselves for a few hours, so they could debug
their programs quickly. With third-generation systems, the time between submit-
ting a job and getting back the output was often several hours, so a single mis-
placed comma could cause a compilation to fail, and the programmer to waste
half a day.

This desire for quick response time paved the way for timesharing, a variant
of multiprogramming, in which each user has an online terminal. In a timesharing

SEC. 1.2 HISTORY @F @PERATING SYSTEMS 13

system, if 20 users are logged in and 17 of them are thinking or talking or drinking
coffee, the CPU can be allocated in turn to the three jobs that want service. Since
people debugging programs usually issue short commands (e.g., compile a five-
page proceduret) rather than long ones (e.g., sort a million-record file), the com-
puter can provide fast, interactive service to a number of users and perhaps also
work on big batch jobs in the background when the CPU is otherwise idle. The
first general-purpose timesharing system, CTSS (Compatible Time Sharing Sys-
tem), was developed at M.ILT. on a specially modified 7094 (Corbaté et al.,
1962). However, timesharing did not really become popular until the necessary
protection hardware became widespread during the third generation.

After the success of the CTSS system, M.I.T., Bell Labs, and General Electric
(then a major computer manufacturer) decided to embark on the development of a
“computer utility,” a machine that would support some hundreds of simultaneous
timesharing users. Their model was the electricity system—when you need elec-
tric power, you just stick a plug in the wall, and within reason, as much power as
you need will be there. The designers of this system, known as MULTICS
(MULTiplexed Information and Computing Service), envisioned one huge ma-
chine providing computing power for everyone in the Boston area. The idea that
machines 10,000 times faster than their GE-645 mainframe would be sold (for
well under $1000) by the millions only 40 years later was pure science fiction.
Sort of like the idea of supersonic trans-Atlantic undersea trains now.

MULTICS was a mixed success. It was designed to support hundreds of users
on a machine only slightly more powerful than an Intel 386-based PC, although it
had much more I/O capacity. This is not quite as crazy as it sounds, since people
knew how to write small, efficient programs in those days, a skill that has subse-
quently been lost. There were many reasons that MULTICS did not take over the
world, not the least of which is that it was written in PL/I, and the PL/I compiler
was years late and barely worked at all when it finally arrived. In addition, MUL-
TICS was enormously ambitious for its time, much like Charles Babbage’s analyt-
ical engine in the nineteenth century.

To make a long story short, MULTICS introduced many seminal ideas into
the computer literature, but turning it into a serious product and a major commer-
cial success was a lot harder than anyone had expected. Bell Labs dropped out of
the project, and General Electric quit the computer business altogether. However,
M.ILT. persisted and eventually got MULTICS working. It was ultimately sold as
a commercial product by the company that bought GE’s computer business
(Honeywell) and installed by about 80 major companies and universities world-
wide. While their numbers were small, MULTICS users were fiercely loyal. Gen-
eral Motors, Ford, and the U.S. National Security Agency, for example, only shut
down their MULTICS systems in the late 1990s, 30 years after MULTICS was re-
leased, after years of trying to get Honeywell to update the hardware.

tWe will use the terms “procedure,”” “subroutine,” and “function” interchangeably in this book.

14 INTRODUCTION CHAP. 1

For the moment, the concept of a computer utility has fizzled out, but it may
well come back in the form of massive centralized Internet servers to which rela-
tively dumb user machines are attached, with most of the work happening on the
big servers. The motivation here is likely to be that most people do not want to
administrate an increasingly complex and finicky computer system and would
prefer to have that work done by a team of professionals working for the company
running the server. E-commerce is already evolving in this direction, with various
companies running e-malls on multiprocessor servers to which simple client ma-
chines connect, very much in the spirit of the MULTICS design.

Despite its lack of commercial success, MULTICS had a huge influence on
subsequent operating systems.It is described in several papers and a book (Cor-
baté et al,, 1972; Corbatd and Vyssotsky, 1965; Daley and Dennis, 1968; Organ-
ick, 1972; and Saltzer, 1974). It also had (and still has) an active Website, located
at www.multicians.org, with a great deal of information about the system, its de-
signers, and its users.

Another major development during the third generation was the phenomenal
growth of minicomputers, starting with the DEC PDP-1 in 1961. The PDP-1 had
only 4K of 18-bit words, but at $120,000 per machine (less than 5 percent of the
price of a 7094), it sold like hotcakes. For certain kinds of nonnumerical work, it
was almost as fast as the 7094 and gave birth to a whole new industry. It was
quickly followed by a series of other PDPs (unlike IBM’s family, all incompati-
ble) culminating in the PDP-11.

One of the computer scientists at Bell Labs who had worked on the MUL-
TICS project, Ken Thompson, subsequently found a small PDP-7 minicomputer
that no one was using and set out to write a stripped-down, one-user version of
MULTICS. This work later developed into the UNIX® operating system, which
became popular in the academic world, with government agencies, and with many
companies.

The history of UNIX has been told elsewhere (e.g., Salus, 1994). Part of that
story will be given in Chap. 10. For now, suffice it to say, that because the source
code was widely available, various organizations developed their own (incompati-
ble) versions, which led to chaos. Two major versions developed, System V, from
AT&T, and BSD (Berkeley Software Distribution) from the University of Califor-
nia at Berkeley. These had minor variants as well. To make it possible to write
programs that could run on any UNIX system, IEEE developed a standard for
UNIX, called POSIX, that most versions of UNIX now support. POSIX defines a
minimal system call interface that conformant UNIX systems must support. In
fact, some other operating systems now also support the POSIX interface.

As an aside, it is worth mentioning that in 1987, the author released a small
clone of UNIX, called MINIX, for educational purposes. Functionally, MINIX is
very similar to UNIX, including POSIX support. Since that time, the original ver-
sion has evolved into MINIX 3, which is highly modular and focused on very high
reliability. It has the ability to detect and replace faulty or even crashed modules

SEC. 12 HISTORY OF OPERATING SYSTEMS 1S

(such as I/O device drivers) on the fly without a reboot and without disturbing
running programs. A book describing its internal operation and listing the source
code in an appendix is also available (Tanenbaum and Woodhull, 2006). The
MINIX 3 system is available for free (including all the source code) over the Inter-
net at www.minix3.org.

The desire for a free production (as cpposed to educational) version of MINIX
led a Finnish student, Linus Torvalds, to write Linux. This system was directly
inspired by and developed on MINIX and originally supported various MINIX fea-
tures (e.g., the MINIX file system). It has since been extended in many ways but
still retains some of underlying structure common to MINIX and to UNIX.
Readers interested in a detailed history of Linux and the open source movement
might want to read Glyn Moody’s (2001) book. Most of what will be said about
UNIX in this book thus applies to System V, MINIX, Linux, and other versions and
clones of UNIX as well.

1.2.4 The Fourth Generation (1980-Present) Personal Computers

With the development of LSI (Large Scale Integration) circuits, chips con-
taining thousands of transistors on a square centimeter of silicon, the age of the
personal computer dawned. In terms of architecture, personal computers (initially
called microcomputers) were not all that different from minicomputers of the
PDP-11 class, but in terms of price they certainly were different. Where the
minicomputer made it possible for a department in a compaily or university to
have its own computer, the microprocessor chip made it possible for a single indi-
vidual to have his or her own personal computer.

In 1974, when Intel came out with the 8080, the first general-purpose 8-bit
CPU, it wanted an operating system for the 8080, in part to be able to test it. Intel
asked one of its consultants, Gary Kildall, to write one. Kildall and a friend first
built a controller for the newly released Shugart Associates 8-inch floppy disk and
hooked the floppy disk up to the 8080, thus producing the first microcomputer
with a disk. Kildall then wrote a disk-based operating system called CP/M (Con-
trol Program for Microcomputers) for it. Since Intel did not think that disk-
based microcomputers had much of a future, when Kildall asked for the rights to
CP/M, Intel granted his request. Kildall then formed a company, Digital Research,
to further develop and sell CP/M.

In 1977, Digital Research rewrote CP/M to make it suitable for running on the
many microcomputers using the 8080, Zilog Z80, and other CPU chips. Many ap-
plication programs were written to run en CP/M, allowing it to completely dom-
inate the world of microcomputing for about 5 years.

In the early 1980s, IBM designed the IBM PC and looked around for software
to run on it. People from IBM contacted Bill Gates to license his BASIC inter-
preter. They also asked him if he knew of an operating system to run on the PC.
Gates suggested that IBM contact Digital Research, then the world’s dominant

16 INTRODUCTION CHAP. 1

operating systems company. Making what was surely the worst business decision
in recorded history, Kildall refused to meet with IBM, sending a subordinate in-
stead. To make matters worse, his lawyer even refused to sign IBM’s nondisclo-
sure agreement covering the not-yet-announced PC. Consequently, IBM went
back to Gates asking if he could provide them with an operating system.

When IBM came back, Gates realized that a local computer manufacturer,
Seattle Computer Products, had a suitable operating system, DOS (Disk Operat-
ing System). He approached them and asked to buy it (allegedly for $75,000),
which they readily accepted. Gates then offered IBM a DOS/BASIC package,
which IBM accepted. IBM wanted certain modifications, so Gates hired the per-
son who wrote DOS, Tim Paterson, as an employee of Gates’ fledgling company,
Microsoft, to make them. The revised system was renamed MS-DOS (MicroSoft
Disk Operating System) and quickly came to dominate the IBM PC market. A
key factor here was Gates’ (in retrospect, extremely wise) decision to sell MS-
DOS to computer companies for bundling with their hardware, compared to
Kildall’s attempt to sell CP/M to end users one at a time (at least initially). After
all this transpired, Kildall dicd suddenly and unexpectedly from causes that have
not been fully disclosed.

By the time the successor to the IBM PC, the IBM PC/AT, came out in 1983
with the Intel 80286 CPU, MS-DOS was firmly entrenched and CP/M was on its
last legs. MS-DOS was later widely used on the 80386 and 80486. Although the
initial version of MS-DOS was fairly primitive, subsequent versions included more
advanced features, including maiy taken from UNIX. (Microsoft was well aware
of UNIX, even selling a microcomputer version of it called XENIX during the
company’s early years.)

CP/M, MS-DOS, and other operating systems for early microcomputers were
all based on users typing in commands from the keyboard. That eventually chang-
ed due to research done by Doug Engelbart at Stanford Research Institute in the
1960s. Engelbart invented the GUI Graphical User Interface, complete with
windows, icons, menus, and mouse. These ideas were adopted by researchers at
Xerox PARC and incorporated into machines they built.

One day, Steve Jobs, who co-invented the Apple computer in his garage,
visited PARC, saw a GUI, and instantly realized its potential value, something
Xerox management famously did not. This strategic blunder of gargantuan pro-
portions led to a book entitled Fumbling the Future (Smith and Alexander, 1988).
Jobs then embarked on building an Apple with a GUI. This project led to the
Lisa, which was too expensive and failed commercially. Jobs’ second attempt, the
Apple Macintosh, was a huge success, not only because it was much cheaper than
the Lisa, but also because it was user friendly, meaning that it was intended for
users who not only knew nothing about computers but furthermore had absolutely
no intention whatsoever of learning. In the creative world of graphic design, pro-
fessional digital photography, and professional digital video production, Macin-
toshes are very widely used and their users are very enthusiastic about them.

SEC. 12 HISTORY @F @PERATING SYSTEMS 17

When Microsoft decided to build a successor to MS-D@S, it was strongly
influenced by the success of the Macintosh. It produced a GUI-based system call-
cd Windows, which originally ran on top of MS-D@®S (i.e., it was more like a shell
than a true operating system). For about 10 years, from 1985 to 1995, Windows
was just a graphical environment on top of MS-D@S. However, starting in 1995 a
freestanding version of Windows, Windows 95, was released that incorporated
many operating system features into it, using the underlying MS-D@®S system only
for booting and running old MS-D@®S programs. In 1998, a slightly modified ver-
sion of this system, called Windows 98 was released. Nevertheless, both Windows
95 and Windows 98 still contained a large amount of 16-bit Intel assembly lan-
guage.

Another Microsoft operating system is Windows NT (NT stands for New
Technology), which is compatible with Windows 95 at a certain level, but a com-
plete rewrite from scratch internally. It is a full 32-bit system. The lead designer
for Windows NT was David Cutler, who was also one of the designers of the
VAX VMS operating system, so some ideas from VMS are present in NT. In
fact, so many ideas from VMS were present in it that the owner of VMS, DEC,
sued Microsoft. The case was settled out of court for an amount of money requir-
ing many digits to express. Microsoft expected that the first version of NT would
kill off MS-D@®S and all other versions of Windows since it was a vastly superior
system, but it fizzled. Only with Windows NT 4.0 did it finally catch on in a big
way, especially on corporate networks. Version 5 of Windows NT was renamed
Windows 2000 in carly 1999. It was intended to be the successor to both Win-
dows 98 and Windows NT 4.0.

That did not quite work out either, so Microsoft came out with yet another
version of Windows 98 called Windows Me (Millennium edition). In 2001, a
slightly upgraded version of Windows 2000, called Windows XP was released.
That version had a much longer run (6 years), basically replacing all previous ver-
sions of Windows. Then in January 2007, Microsoft finally released the successor
to Windows XP, called Vista. It came with a new graphical interface, Aero, and
many new or upgraded user programs. Microsoft hopes it will replace Windows
XP completely, but this process could take the better part of a decade.

The other major contender in the personal computer world is UNIX (and its
various derivatives). UNIX is strongest on network and enterprise servers, but is
also increasingly present on desktop computers, especially in rapidly developing
countries such as India and China. @n Pentium-based computers, Linux is
becoming a popular altermative to Windows for students and increasingly many
corporate users. As an aside, throughout this book we will use the term “Pen-
tium” to mean the Pentium I, II, III, and 4 as well as its successors such as Core 2
Duo. The term x86 is also sometimes used to indicate the entire rainge of Intel
CPUs going back to the 8086, whereas “Pentium” will be used to mean all CPUs
from the Pentium I onwards. Admittedly, this term is not perfect, but no better one
is available. One has to wonder which marketing genius at Intel threw out a brand

18 INTRODUCTI®ON CHAP. 1

name (Pentium) that half the world knew well and respected and replaced it with
terms like “Core 2 duo” which very few people understand—quick, what does the
“2” mean and what does the “duo” mean? Maybe “Pentium 5 (or “Pentium 5
dual core,” etc.) was just too hard to remember. FreeBSD is also a popular UNIX
derivative, originating from the BSD project at Berkeley. All modern Macintosh
computers run a modified version of FreeBSD. UNIX is also standard on worksta-
tions powered by high-performance RISC chips, such as those sold by Hewlett-
Packard and Sun Microsystems.

Many UNIX users, especially experienced programmers, prefer a command-
based interface to a GUI, so nearly all UNIX systems support a windowing system
called the X Window System (also known as X11) produced at M.ILT. This sys-
tem handles the basic window management, allowing users to create, delete,
move, and resize windows using a mouse. Often a complete GUI, such as Gnome
or KDE is available to run on top of X11 giving UNIX a look and feel something
like the Macintosh or Microsoft Windows, for those UNIX users who want such a
thing.

An interesting development that began taking place during the mid-1980s is
the growth of networks of personal computers running network operating sys-
tems and distributed operating systems (Tanenbaum and Van Steen, 2007). In
a network operating system, the users are aware of the existence of multiple com-
puters and can log in to remote machines and copy files from one machine to an-
other. Each machine runs its own local operating system and has its own local
user (or users).

Network operating systems are not fundamentally different from single-proc-
essor operating systems. They obviously need a network interface controller and
some low-level software to drive it, as well as programs to achieve remote login
and remote file access, but these additions do not change the essential structure of
the operating system.

A distributed operating system, in contrast, is one that appears to its users as a
traditional uniprocessor system, even though it is actually composed of multiple
processors. The users should not be aware of where their programs are being run
or where their files are located; that should all be handled automatically and effi-
ciently by the operating system.

True distributed operating systems require more than just adding a little code
to a uniprocessor operating system, because distributed and centralized systems
differ in certain critical ways. Distributed systems, for example, often allow appli-
cations to run on several processors at the same time, thus requiring more com-
plex processor scheduling algorithms in order to optimize the amount of paral-
lelism.

Communication delays within the network often mean that these (and other)
algorithms must run with incomplete, outdated, or even incorrect information.
This situation is radically different from a single-processor system in which the
operating system has complete information about the system state.

SEC 18 COMPUTER HARDWARE REVIEW 19

1.3 COMPUTER HARDWARE REVIEW

An operating system is intimately tied to the hardware of the computer it runs
on. It extends the computer’s instruction set and manages its resources. To work,
it must know a great deal about the hardware, at least about how the hardware
appears to the programmer. For this reason, let us briefly review computer hard-
ware as found in modern personal computers. After that, we can start getting into
the details of what operating systems do and how they work.

Conceptually, a simple personal computer can be abstracted to a model
resembling that of Fig. 1-6. The CPU, memory, and I/O devices are all connected
by a system bus and communicate with one another over it. Modem personal
computers have a more complicated structure, involving multiple buses, which we
will look at later. For the time being, this model will be sufficient. In the follow-
ing sections, we will briefly review these components and examine some of the
hardware issues that are of concern to operating system designers. Needless to
say, this will be a very compact summary. Many books have been written on the
subject of computer hardware and computer organization Two well-known ones
are by Tanenbaum (2006) aind Patterson and Hennessy (2004).

Monitor
Hard
Keyboard USB printer disk drive
o 00000
i Hard
Video Keyboard USB :
CPU Memory disk
W] controller controller controller eonirales
Bus

Figure 1-6. Some of the components of a simple personal computer.

1.3.1 Processors

The “brain” of the computer is the CPU. It fetches instructions from memory
and executes them. The basic cycle of every CPU is to fetch the first instruction
from memory, decode it to determine its type and operands, execute it, and then
fetch, decode, and execute subsequent instructions. The cycle is repeated until the
program finishes. In this way, programs are carried out.

20 INTRODUCTI®ON CHAP. 1

Each CPU has a specific set of instructions that it can execute. Thus a Pen-
tium cannot execute SPARC programs and a SPARC cannot execute Pentium pro-
grams. Because accessing memory to get an instruction or data word takes much
longer than executing an instruction, all CPUs contain some registers inside to
hold key variables and temporary results. Thus the instruction set generally con-
tains instructions to load a word from memory into a register, and store a word
from a register into memory. Other instructions combine two operands from regis-
ters, memory, or both into a result, such as adding two words and storing the re-
sult in a register or in memory.

In addition to the general registers used to hold variables and temporary re-
sults, most computers have several special registers that are visible to the pro-
grammer. One of these is the program counter, which contains the memory ad-
dress of the next instruction to be fetched. After that instruction has been fetched,
the program counter is updated to point to its successor.

Another register is the stack pointer, which points to the top of the current
stack in memory. The stack contains one frame for each procedure that has been
entered but not yet exited. A procedure’s stack frame holds those input parame-
ters, local variables, and temporary variables that are not kept in registers.

Yet another register is the PSW (Program Status Word). This register con-
tains the condition code bits, which are set by comparison instructions, the CPU
priority, the mode (user or kemel), and various other control bits. User programs
may normally read the entire PSW but typically may write only some of its ficlds.
The PSW plays an important role in system calls and I/0.

The operating system must be aware of all the registers. When time multi-
plexing the CPU, the operating system will often stop the running program to
(re)start another one. Every time it stops a running program, the operating system
must save all the registers so they can be restored when the program runs later.

To improve performance, CPU designers have long abandoned the simple
model of fetching, decoding, and executing one instruction at a time. Many mod-
em CPUs have facilities for executing more than one instruction at the same time.
For example, a CPU might have separate fetch, decode, and execute units, so that
while it was executing instruction #, it could also be decoding instruction z + |
and fetching instruction n + 2. Such an organization is called a pipeline and is il-
lustrated in Fig. 1-7(a) for a pipeline with three stages. Longer pipelines are com-
mon. In most pipeline designs, once an instruction has been fetched into the pipe-
line, it must be executed, even if the preceding instruction was a conditional
branch that was taken. Pipelines cause compiler writers and operating system
writers great headaches because they expose the complexities of the underlying
machine to them.

Even more advanced than a pipeline design is a superscalar CPU, shown in
Fig. 1-7(b). In this design, multiple execution units are present, for example, one
for integer arithmetic, one for floating-point arithmetic, and one for Boolean oper-
ations. Two or more instructions are fetched at once, decoded, and dumped into a

SEC. 1.3 COMPUTER HARDWARE REVIEW 21

Execute
Fetch Decod .
etc ecode
unit = unit
Fetch - Decode | __ | Execute Exﬁ&?te
unit unit |] unit = ——
etc ecode
unit — unit
Execute
unit
@) (b)

Figure 1-7. (a) A three-stage pipeline. (b) A superscalar CPU.

holding buffer until they can be executed. As soon as an execution unit is free, it
looks in the holding buffer to see if there is an instruction it can handle, and if so,
it removes the instruction from the buffer and executes it. An implication of this
design is that program instructions are often executed out of order. For the most
part, it is up to the hardware to make sure the result produced is the same one a
sequential implementation would have produced, but an annoying amount of the
complexity is foisted onto the operating system, as we shall see.

Most CPUs, except very simple ones used in embedded systems, have two
modes, kernel mode and user mode, as mentioned earlier. Usually, a bit in the
PSW controls the mode. When running in kemel mode, the CPU can execute
every instruction in its instruction set and use every feature of the hardware. The
operating system runs in kernel mode, giving it access to the complete hardware.

In contrast, user programs run in user mode, which permits only a subset of
the instructions to be executed and a subset of the features to be accessed. Gener-
ally, all instructions involving I/O and memory protection are disallowed in user
mode. Setting the PSW mode bit to enter kernel mode is also forbidden, of course.

To obtain services from the operating system, a user program must make a
system call, which traps into the kernel and invokes the operating system. The
TRAP instruction switches from user mode to kermel mode and starts the operating
system. When the work has been completed, control is returned to the user pro-
gram at the instruction following the system call. We will explain the details of
the system call mechanism later in this chapter but for the time being, think of it
as a special kind of procedure call instruction that has the additional property of
switching from user mode to kermnel mode. As a note on typography, we will use
the lower case Helvetica font to indicate system calls in running text, like this:
read.

It is worth noting that computers have traps other than the instruction for exe-
cuting a system call. Most of the other traps are caused by the hardware to wam of
an exceptional situation such as an attempt to divide by 0 or a floating-point
underflow. In all cases the operating system gets control and must decide what to

22 INTRODUCTI®ON CHAP. 1

do. Sometimes the program must be terminated with an error. Other times the
error can be ignored (an underflowed number can be set to 0). Finally, when the
program has announced in advance that it wants to handle certain kinds of condi-
tions, control can be passed back to the program to let it deal with the problem.

Multithreaded and Multicore Chips

Moore’s law states that the number of transistors on a chip doubles every 18
months. This “law’’ is not some kind of law of physics, like conservation of mo-
mentum, but is an observation by Intel cofounder Gordon Moore of how fast proc-
ess engineers at the semiconductor companies are able to shrink their transistors.
Moore’s law has held for three decades now and is expected to hold for at least
one more.

The abundance of transistors is leading to a problem: what to do with all of
them? We saw one approach above: superscalar architectures, with multiple func-
tional units. But as the number of transistors increases, even more is possible.
One obvious thing to do is put bigger caches on the CPU chip and that is defin-
itely happening, but eventually the point of diminishing returns is reached.

The obvious next step is to replicate not only the functional units, but also
some of the control logic. The Pentium 4 and some other CPU chips have this
property, called multithreading or hyperthreading (Intel's name for it). To a
first approximation, what it does is allow the CPU to hold the state of two dif-
ferent thrcads and then switch back and forth on a nanosecond time scale. (A
thread is a kind of lightweight process, which, in turn, is a running program; we
will get into the details in Chap. 2.) For example, if one of the processes needs to
read a word from memory (which takes many clock cycles), a multithreaded CPU
can just switch to another thread. Multithreading does not offer wue parallelism.
Only one process at a time is running, but thread switching time is reduced to the
order of a nanosecond.

Multithreading has implications for the operating system because each thread
appears to the operating system as a separate CPU. Consider a system with two
actual CPUs, each with two threads. The operating system will see this as four
CPUs. If there is only enough work to keep two CPUs busy at a certain point in
time, it may inadvertently schedule two threads on the same CPU, with the other
CPU completely idle. This choice is far less efficient than using one thread on
each CPU. The successor to the Pentium 4, the Core (also Core 2) architecture
does not have hyperthreading, but Intel has announced that the Core’s successor
will have it again.

Beyond multithreading, we have CPU chips with two or four or more com-
plete processors or cores on them. The multicore chips of Fig. 1-8 effectively
carry four minichips on them, each with its own independent CPU. (The caches
will be explained below.) Making use of such a multicore chip will definitely re-
quire a multiprocessor operating system.

SEC. 1.3 COMPUTER HARDWARE REVIEW 23

L1 —fz 7
cache |l core1 | | Core2

(a) (b)

Figure 1-8. (a) A quad-core chip with a shared L2 cache. (b) A quad-core chip
with separate L2 caches.

1.3.2 Memory

The second major component in any computer is the memory. Ideally, a mem-
ory should be extremely fast (faster than executing an instruction so the CPU is
not held up by the memory), abundantly large, and dirt cheap. No current tech-
nology satisfies all of these goals, so a different approach is taken. The memory
system is constructed as a hierarchy of layers, as shown in Fig. 1-9. The top lay-
ers have higher speed, smaller capacity, and greater cost per bit than the lower
ones, often by factors of a billion or more.

Typical access time Typical capacity
1 nsec Registers <1 KB
2 nsec Cache 4 MB
10 nsec Main memory 512-2048 MB
10 msec Magnetic disk 200-1000 GB
100 sec Magnetic tape 400-800 GB

Figure 1-9. A typical memory hierarchy. The numbers are very rough approximations.

The top layer consists of the registers internal to the CPU. They are made of
the same material as the CPU and are thus just as fast as the CPU. Consequently,
there is no delay in accessing them. The storage capacity available in them is typi-
cally 32 x 32-bits on a 32-bit CPU and 64 X 64-bits on a 64-bit CPU. Less than 1
KB in both cases. Programs must manage the registers (i.c., decide what to keep
in them) themselves, in software.

24 INTRODUCTI®ON CHAP. 1

Next comes the cache memory, which is mostly controlled by the hardware.
Main memory is divided up into cache lines, typically 64 bytes, with addresses O
to 63 in cache line O, addresses 64 to 127 in cache line 1, and so on. The most
heavily used cache lines are kept in a high-speed cache located inside or very
close to the CPU. When the program needs to read a memory word, the cache
hardware checks to see if the line needed is in the cache. If it is, called a cache
hit, the request is satisfied from the cache and no memory request is sent over the
bus to the main memory. Cache hits normally take about two clock cycles. Cache
misses have to go to memory, with a substantial time penalty. Cache memory is
limited in size due to its high cost. Some machines have two or even three levels
of cache, each one slower and bigger than the one before it.

Caching plays a major role in many areas of computer science, not just cach-
ing lines of RAM. Whenever there is a large resource that can be divided into
pieces, some of which are used much more heavily than others, caching is often
invoked to improve performance. Operating systems use it all the time. For ex-
ample, most operating systems keep (pieces of) heavily used files in main memo-
ry to avoid having to fetch them from the disk repeatedly. Similarly, the results of
converting long path names like

/fhome/ast/pro jects/minix3/src/kernel/clock.c

into the disk address where the file is located can be cached to avoid repeated
lookups. Finally, when an address of a Web page (URL) is converted to a network
address (IP address), the result can be cached for future use. Many other uses
exist.

In any caching system, several questions come up fairly soon, including:

1. When to put a new item into the cache.
Which cache line to put the new item in.

Which item to remove from the cache when a slot is needed.

"o

Where to put a newly evicted item in the larger memory.

Not every question is relevant to every caching situation. For caching lines of
main memory in the CPU cache, a new item will generally be entered on every
cache miss. The cache line to use is generally computed by using some of the
high-order bits of the memory address referenced. For example, with 4096 cache
lines of 64 bytes and 32 bit addresses, bits 6 through 17 might be used to specify
the cache line, with bits 0 to 5 the byte within the cache line. In this case, the
item to remove is the same one as the new data goes into, but in other systems it
might not be. Finally, when a cache line is rewritten to main memory (if it has
been modificd since it was cached), the place in memory to rewrite it to is
uniquely determined by the address in question.

SEC. 1.3 COMPUTER HARDWARE REVIEW 25

Caches are such a good idea that modern CPU’s have two of them. The first
level or L1 cache is always inside the CPU and usually feeds decoded instructions
into the CPUs execution engine. Most chips have a second L1 cache for very
heavily used data words. The L1 caches are typically 16 KB each. In addition,
there is often a second cache, called the 1.2 cache, that holds several megabytes
of recently used memory words. The difference between the L1 and L2 caches
lies in the timing. Access to the L1 cache is done without any delay, whereas ac-
cess to the L2 cache involves a delay of one or two clock cycles.

On multicore chips, the designers have to decide where to place the caches.
In Fig. 1-8(a), there is a single L2 cache shared by all the cores. This approach is
used in Intel multicore chips. In contrast, in Fig. 1-8(b), each core has its own L2
cache. This approach is used by AMD. Each strategy has its pros and cons. For
example, the Intel shared .2 cache requires a more complicated cache controller
but the AMD way makes keeping the L2 caches consistent more difficult.

Main memory comes next in the hierarchy of Fig. 1-9. This is the workhorse
of the memory system. Main memory is usually called RAM (Random Access
Memory). Old-timers sometimes call it core memory, because computers in the
1950s and 1960s used tiny magnetizable ferrite cores for main memory. Currently,
memories are hundreds of megabytes to several gigabytes and growing rapidly.
All CPU requests that cannot be satisfied out of the cache go to main memory.

In addition to the main memory, many computers have a small amount of
nonvolatile random access memory. Unlike RAM, nonvolatile memory does not
lose its contents when the power is switched off. ROM (Read Only Memery) is
programmed at the factory and cannot be changed afterward. It is fast and inex-
pensive. On some computers, the bootstrap loader used to start the computer is
contained in ROM. Also, some I/O cards come with ROM for handling low-level
device control.

EEPROM (Electrically Erasable PROM) and flash memory are also non-
volatile, but in contrast to ROM can be erased and rewritten. However, writing
them takes orders of magnitude more time than writing RAM, so they are used in
the same way ROM is, only with the additional feature that it is now possible to
correct bugs in programs they hold by rewriting them in the field.

Flash memory is also commonly used as the storage medium in portable elec-
tronic devices. It serves as film in digital cameras and as the disk in portable mu-
sic players, to name just two uses. Flash memory is intermediate in speed between
RAM and disk. Also, unlike disk memory, if it is erased too many times, it wears
out.

Yet another kind of memory is CMOS, which is volatile. Many computers use
CMOS memory to hold the current time and date. The CMOS memory and the
clock circuit that increments the time in it are powered by a small battery, so the
time is correctly updated, even when the computer is unplugged. The CMOS
memory can also hold the configuration parameters, such as which disk to boot
from. CMOS is used because it draws so little power that the original factory-

26 INTRODUCTI®ON CHAP. 1

installed battery often lasts for several years. However, when it begins to fail, the
computer can appear to have Alzheimer’s disease, forgetting things that it has
known for years, like which hard disk to boot from.

1.3.3 Disks

Next in the hierarchy is magnetic disk (hard disk). Disk storage is two orders
of magnitude cheaper than RAM per bit and often two orders of magnitude larger
as well. The only problem is that the time to randomly access data on it is close to
three orders of magnitude slower. This low speed is due to the fact that a disk is a
mechanical device, as shown in Fig. 1-10.

]

Read/write head (1 per surface)

Surface 7 K O
Surface 6 TR

y

Surface 5 = |

D
Surface 4 e
Surface 3 S =%

5 Direction of arm motion
Surface 2 O
Surface 1

|

=

Surface 0

Figure 1-10. Structure of a disk drive.

A disk consists of one or more metal platters that rotate at 5400, 7200, or
10.800 rpm A mechanical arm pivots over the platters from the corner, similar to
the pickup arm on an old 33 rpm phonograph for playing vinyl records. Infor-
mation is written onto the disk in a series of concentric circles. At any given arm
position, each of the heads can read an annular region called a track. Together,
all the tracks for a given arm position form a cylinder.

Each track is divided into some number of sectors, typically 512 bytes per
sector. On modem disks, the outer cylinders contain more sectors than the inner
ones. Moving the arm from one cylinder to the next one takes about 1 msec.
Moving it to a random cylinder typically takes 5 msec to 10 msec, depending on
the drive. Once the arm is on the correct track, the drive must wait for the needed
sector to rotate under the head, an additional delay of 5 msec to 10 msec, depend-
ing on the drive’s rpm. Once the sector is under the head, reading or writing oc-
curs at a rate of 50 MB/sec on low-end disks to 160 MB/sec on faster ones.

Many computers support a scheme known as virtual memory, which we will
discuss at some length in Chap. 3. This scheme makes it possible to run programs

SEC:. 18 COMPUTER HARDWARE REVIEW 27

larger than physical memory by placing them on the disk and using main memory
as a kind of cache for the most heavily executed parts. This scheme requires re-
mapping memory addresses on the fly to convert the address the program gen-
erated to the physical address in RAM where the word is located. This mapping is
done by a part of the CPU called the MMU (Memory Management Unit), as
shown in Fig. 1-6.

The presence of caching and the MMU can have a major impact on per-
formance. In a multiprogramming system, when switching from one program to
another, sometimes called a context switch, it may be necessary to flush all modi-
fied blocks from the cache and change the mapping registers in the MMU. Both
of these are expensive operations and programmers try hard to avoid them. We
will see some of the implications of their tactics later.

1.3.4 Tapes

The final layer in the memory hierarchy is magnetic tape. This medium is
often used as a backup for disk storage and for holding very large data sets. To
access a tape, it must first be put into a tape reader, either by a person or a robot
(automated tape handling is common at installations with huge databases). Then
the tape may have to be spooled forward to get to the requested block. All in all,
this could take minutes. The big plus of tape is that it is exceedingly cheap per bit
and removable, which is important for backup tapes that must be stored off-site in
order to survive fires, floods, earthquakes, and other disasters.

The memory hierarchy we have discussed is typical, but some installations do
not have all the layers or have a few different ones (such as optical disk). Still, in
all of them, as one goes on down the hierarchy, the random access time increases
dramatically, the capacity increases equally dramatically, and the cost per bit
drops enormously. Consequently, it is likely that memory hierarchies will be
around for years to come.

1.3.S I/0 Devices

The CPU and memory are not the only resources that the operating system
must manage. I/0 devices also interact heavily with the operating system. As we
saw in Fig. 1-6, I/0O devices generally consist of two parts: a controller and the de-
vice itself. The controller is a chip or a set of chips that physically controls the de-
vice. It accepts commands from the operating system, for example, to read data
from the device, and carries them out.

In many cases, the actual control of the device is very complicated and de-
tailed, so it is the job of the controller to present a simpler interface to the operat-
ing system (but still very complex). For example, a disk controller might accept a
command to read sector 11,206 from disk 2. The controller then has to convert
this linear sector number to a cylinder, sector, and head. This conversion may be
complicated by the fact that outer cylinders have more sectors than inner ones and

28 INTRODUCTI®ON CHAP. 1

that some bad sectors have been remapped onto other ones. Then the controller
has to determine which cylinder the disk arm is on and give it a sequence of
pulses to move in or out the requisite number of cylinders. It has to wait until the
proper sector has rotated under the head and then start reading and storing the bits
as they come off the drive, removing the preamble and computing the checksum.
Finally, it has to assemble the incoming bits into words and store them in memo-
ry. To do all this work, controllers often contain small embedded computers that
are programmed to do their work.

The other piece is the actual device itself. Devices have fairly simple inter-
faces, both because they cannot do much and to make them standard. The latter is
necded so that any IDE disk controller can handle any IDE disk, for example.
IDE stands for Integrated Drive Electronics and is the standard type of disk on
many computers. Since the actual device interface is hidden behind the controller,
all that the operating system sees is the interface to the controller, which may be
quite different from the interface to the device.

Because each type of controller is different, different software is necded to
control each one. The software that talks to a conwroller, giving it commands and
accepting responses, is called a device driver. Each controller manufacturer has
to supply a driver for each operating system it supports. Thus a scanner may come
with drivers for Windows 2000, Windows XP, Vista, and Linux, for example.

To be used, the driver has to be put into the operating system so it can run in
kemel mode. Drivers can actually run outside the kernel, but only a few current
systems support this possibility because it requires the ability to allow a user-
space driver to be able to access the device in a controlled way, a feature rarely
supported. There are three ways the driver can be put into the kemel. The first
way is to relink the kernel with the new driver and then reboot the system. Many
older UNIX systems work like this. The second way is to make an entry in an op-
erating system file telling it that it needs the driver and then reboot the system. At
boot time, the operating system goes and finds the drivers it needs and loads them.
Windows works this way. The third way is for the operating system to be able to
accept new drivers while running and install them on the fly without the need to
reboot. This way used to be rare but is becoming much more common now. Hot
pluggable devices, such as USB and IEEE 1394 devices (discussed below) always
necd dynamically loaded drivers.

Every controller has a small number of registers that are used to communicate
with it. For example, a minimal disk controller might have registers for specifying
the disk address, memory address, sector count, and direction (read or write). To
activate the controller, the driver gets a command from the operating system, then
translates it into the appropriate values to write into the device registers. The col-
lection of all the device registers forms the 1/@ port space, a subject we will
come back to in Chap. 5.

On some computers, the device registers are mapped into the operating sys-
tem’s address space (the addresses it can use), so they can be read and written like

SEC 18 COMPUTER HARDWARE REVIEW 29

ordinary memory words. On such computers, no special I/O instructions are re-
quired and user programs can be kept away from the hardware by not putting
these memory addresses within their reach (e.g., by using base and limit regis-
ters). On other computers, the device registers are put in a special I/O port space,
with each register having a port address. On these machines, special IN and OUT
instructions are available in kemnel mode to allow drivers to read and write the
registers. The former scheme eliminates the need for special I/O instructions but
uses up some of the address space. The latter uses no address space but requires
special instructions. Both systems are widely used.

Input and output can be done in three different ways. In the simplest method,
a user program issues a system call, which the kernel then translates into a proce-
dure call to the appropriate driver. The driver then starts the /O and sits in a tight
loop continuously polling the device to see if it is done (usually there is some bit
that indicates that the device is still busy). When the I/0 has completed, the driv-
er puts the data (if any) where they are necded and returns. The operating system
then returns control to the caller. This method is called busy waiting and has the
disadvantage of tying up the CPU polling the device until it is fmished.

The second method is for the driver to start the device and ask it to give an in-
terrupt when it is finished. At that point the driver returns. The operating system
then blocks the caller if need be and looks for other work to do. When the con-
troller detects the end of the transfer, it generates an interrupt to signal comple-
tion.

Interrupts are very importaiit in operating systems, so let us examine the idea
more closely. In Fig. 1-11(a) we see a three-step process for I/O. In step 1, the
driver tells the controller what to do by writing into its device registers. The con-
troller then starts the device. When the controller has finished reading or writing
the number of bytes it has been told to transfer, it signals the interrupt controller
chip using certain bus lines in step 2. If the interrupt controller is prepared to ac-
cept the interrupt (which it may not be if it is busy with a higher-priority one), it
asserts a pin on the CPU chip informing it, in step 3. In step 4, the interrupt con-
troller puts the number of the device on the bus so the CPU can read it and know
which device has just finished (many devices may be running at the same time).

Once the CPU has decided to take the interrupt, the program counter and
PSW are typically then pushed onto the current stack and the CPU switched into
kemel mode. The device number may be used as an index into part of memory to
fmd the address of the interrupt handler for this device. This part of memory is
called the interrupt vector. Once the interrupt handler (part of the driver for the
interrupting device) has started, it removes the stacked program counter and PSW
and saves them, then queries the device to learn its status. When the handler is all
finished, it retumns to the previously running user program to the first instruction
that was not yet executed. These steps are shown in Fig. 1-11(b).

The third method for doing I/O makes use of special hardware: a DMA
(Direct Memory Access) chip that can control the flow of bits between memory

30 INTRODUCTI®ON CHAP. 1

Disk drive
¢4 Current instruction

f Next instruction

3 | Interrupt Disk
CRU e controller controller 3. Return
1. Interrupt

1“ Jft__3

1 \

2. Dispatch
to handler ~

Interrupt handler =~
(@) (b)

Figure 1-11. (a) The steps in starting an 1/0 device and getting an interrupt. (b)
Interrupt processing involves taking the interrupt, running the interrupt handler,
and retumning to the user program.

and some controller without constant CPU intervention. The CPU sets up the
DMA chip, telling it how many bytes to transfer, the device and memory ad-
dresses involved, and the direction, and lets it go. When the DMA chip is done, it
causes an interrupt, which is handled as described above. DMA and I/O hardware
in general will be discussed in more detail in Chap. 5.

Interrupts can often happen at highly inconvenient moments, for example,
while another interrupt handler is running. For this reason, the CPU has a way to
disable interrupts and then reenable them later. While interrupts are disabled, any
devices that finish continue to assert their interrupt signals, but the CPU is not in-
terrupted until interrupts are enabled again. If multiple devices finish while inter-
rupts are disabled, the interrupt controller decides which one to let through first,
usually based on static prioritics assigned to each device. The highest-priority de-
vice wins.

1.3.6 Buses

The organization of Fig. 1-6 was used on minicomputers for years and also on
the original IBM PC. However, as processors and memories got faster, the ability
of a single bus (and certainly the IBM PC bus) to handle all the traffic was
strained to the breaking point. Something had to give. As a result, additional
buses were added, both for faster I/O devices and for CPU-to-memory traffic. As
a consequence of this evolution, a large Pentium system currently looks some-
thing like Fig. 1-12.

This system has eight buses (cache, local, memory, PCI, SCSI, USB, IDE,
and ISA), each with a different transfer rate and function. The operating system

BEC 18 COMPUTER HARDWARE REVIEW 31

Cache bus Local bus Memory bus

Level 2

cache CPU

=

PCl < l N Main

bridge /| memory
<: /PCI bus - >
[A S Y

USB i
Graphics
SCsl USB | bus ISA IDE adaptor Available
7 bridge :: : disk { PCl slot
<£2> - r F - Mon-
T - =3 IDE bus itor
ouse
SCS8l bus board ISA bus
¢ Pl 111 [] >
[I o
Sound ; i
Modem Printer Available
card ISA slot

Kigure 1-12. The structure of a large Pentium system

must be aware of all of them for configuration and management. The two main
buses are the original IBM PC ISA (Industry Standard Architecture) bus and
its successor, the PCI (Peripheral Component Interconnect) bus. The ISA bus,
which was originally the IBM PC/AT bus, runs at 8.33 MHz and can transfer 2
bytes at once, for a maximum speed of 16.67 MB/sec. It is included for backward
compatibility with old and slow I/O cards. Modem systems frequently leave it out
and it is dying off. The PCI bus was invented by Intel as a successor to the ISA
bus. It can run at 66 MHz and transfer 8 bytes at a time, for a data rate of 528
MB/sec. Most high-speed /O devices use the PCI bus now. Even some non-Intel
computers use the PCI bus due to the large number of /O cards available for it.
New computers are being brought out with an updated version of the PCI bus call-
cd PCI Express.

In this configuration, the CPU talks to the PCI bridge chip over the local bus,
and the PCI bridge chip talks to the memory over a dedicated memory bus, often
running at 100 MHz. Pentium systems have a level-1 cache on chip and a much
larger level-2 cache off chip, connected to the CPU by the cache bus.

In addition, this system contains three specialized buses: IDE, USB, and
SCSI. The IDE bus is for attaching peripheral devices such as disks and CD-
R@®Ms to the system. The IDE bus is an outgrowth of the disk controller interface

32 INTRODUCTI®ON CHAP. 1

on the PC/AT and is now standard on nearly all Pentium-based systems for the
hard disk and often the CD-ROM.

The USB (Universal Serial Bus) was invented to attach all the slow I/O de-
vices, such as the keyboard and mouse, to the computer. It uses a small four-wire
connector, two of which supply electrical power to the USB devices. USB is a
centralized bus in which a root device polls the I/O devices every | msec to see if
they have any traffic. USB 1.0 could handle an aggregate load of 1.5 MB/sec but
the newer USB 2.0 bus can handle 60 MB/sec. All the USB devices share a single
USB device driver, making it unnecessary to install a new driver for each new
USB device. Consequently, USB devices can be added to the computer without
the need to reboot.

The SCSI (Small Computer System Interface) bus is a high-performance
bus intended for fast disks, scanners, and other devices needing considerable
bandwidth. It can run at up to 160 MB/sec. It has been present on Macintosh sys-
tems since they were invented and is also popular on UNIX and some Intel-based
systems.

Yet another bus (not shown in Fig. 1-12) is IEEE 1394. Sometimes it is call-
ed FireWire, although strictly speaking, FireWire is the name Apple uses for its
implementation of 1394. Like USB, IEEE 1394 is bit serial but is designed for
packet transfers at specds up to 100 MB/sec, making it useful for connecting digi-
tal camcorders and similar multimedia devices to a computer. Unlike USB, IEEE
1394 does not have a central controller.

To work in an environment such as that of IFig. 1-12, the operating system has
to know what peripheral devices are connected to the computer and configure
them. This requirement led Intel and Microsoft to design a PC system called plug
and play, based on a similar concept first implemented in the Apple Macintosh.
Before plug and play, each I/O card had a fixed interrupt request level and fixed
addresses for its I/O registers. For example, the keyboard was interrupt 1 and used
I/O addresses 0x60 to 0x64, the floppy disk controller was interrupt 6 and used
I/O addresses 0x3F0 to 0x3F7, and the printer was interrupt 7 and used I/O ad-
dresses 0x378 to 0x37A, and so on.

So far, so good. The trouble came when the user bought a sound card and a
modem card and both happened to use, say, interrupt 4. They would conflict and
would not work together. The solution was to include DIP switches or jumpers on
every I/0 card and instruct the user to please set them to select an interrupt level
and [/O device addresses that did not conflict with any others in the user’s system.
Teenagers who devoted their lives to the intricacies of the PC hardware could
sometimes do this without making errors. Unfortunately, nobody else could, lead-
ing to chaos.

What plug and play does is have the system automatically collect information
about the I/0 devices, centrally assign interrupt levels and I/O addresses, and then
tell each card what its numbers are. This work is closely related to booting the
computer, so let us look at that. It is not completely trivial.

P
)

BEC. 13 COMPUTER HARDWARE REVIEW

1.3.7 Booting the Computer

Very briefly, the Pentium boot process is as follows. Every Pentium contains
a parentboard (formerly called a motherboard before political correctness hit the
computer industry). On the parentboard is a program called the system BIOS
(Basic Input Qutput System). The BIOS contains low-level I/O software, in-
cluding procedures to read the keyboard, write to the screen, and do disk I/O,
among other things. Nowadays, it is held in a flash RAM, which is nonvolatile but
which can be updated by the operating system when bugs are found in the BIOS.

When the computer is booted, the BIOS is started. It first checks to see how
much RAM is installed and whether the keyboard and other basic devices are in-
stalled and responding correctly. It starts out by scanning the ISA and PCI buses
to detect all the devices attached to them. Some of these devices are typically
legacy (i.c., designed before plug and play was invented) and have fixed interrupt
levels and I/0 addresses (possibly set by switches or jumpers on the I/O card, but
not modifiable by the operating system). These devices are recorded. The plug
and play devices are also recorded. If the devices present are different from when
the system was last booted, the new devices are configured.

The BIOS then determines the boot device by trying a list of devices stored in
the CMOS memory. The user can change this list by entering a BIOS configura-
tion program just after booting. Typically, an attempt is made to boot from the
floppy disk, if one is present. If that fails the CD-ROM drive is queried to see if a
bootable CD-ROM is present. If neither a floppy nor a CD-ROM is present, the
system is booted from the hard disk. The first sector from the boot device is read
into memory and executed. This sector contains a program that normally exam-
ines the partition table at the end of the boot sector to determine which partition is
active. Then a secondary boot loader is read in from that partition. This loader
reads in the operating system from the active partition and starts it.

The operating system then queries the BIOS to get the configuration infor-
mation. For each device, it checks to see if it has the device driver. If not, it asks
the user to insert a CD-ROM containing the driver (supplied by the device’s
manufacturer). Once it has all the device drivers, the operating system loads them
into the kemel. Then it initializes its tables, creates whatever background proc-
esses are needed, and starts up a login program or GUL

1.4 THE OPERATING SYSTEM Z0OO0

Operating systems have been around now for over half a century. During this
time, quite a variety of them have been developed, not all of them widely known.
In this section we will briefly touch upon nine of them. We will come back to
some of these different kinds of systems later in the book.

34 INTRODUCTI®ON CHAP. 1
1.4.1 Mainframe Operating Systems

At the high end are the operating systems for the mainframes, those room-
sized computers still found in major corporate data centers. These computers dif-
fer from personal computers in terms of their I/O capacity. A mainframe with
1000 disks and millions of gigabytes of data is not unusual; a personal computer
with these specifications would be the envy of its friends. Mainframes are also
making something of a comeback as high-end Web servers, servers for large-scale
electronic commerce sites, and servers for business-to-business transactions.

The operating systems for mainframes are heavily oriented toward processing
many jobs at once, most of which need prodigious amounts of I/O. They typically
offer three kinds of services: batch, transaction processing, and timesharing. A
batch system is one that processes routine jobs without any interactive user pres-
ent. Claims processing in an insurance company or sales reporting for a chain of
stores is typically done in batch mode. Transaction processing systems handle
large numbers of small requests, for example, check processing at a bank or air-
line reservations. Each unit of work is small, but the system must handle hundreds
or thousands per second. Timesharing systems allow multiple remote users to run
jobs on the computer at once, such as querying a big database. These functions are
closely related; mainframe operating systems often perform all of them. An ex-
ample mainframe operating system is OS/390, a descendant of OS/360. However,
mainframe operating systems are gradually being replaced by UNIX variants such
as Linux.

1.4.2 Server Operating Systems

One level down are the server operating systems. They run on servers, which
are either very large personal computers, workstations, or even mainframes. They
serve multiple users at once over a network and allow the users to share hardware
and software resources. Servers can provide print service, file service, or Web ser-
vice. Internet providers run maiy server machines to support their customers and
Websites use servers to store the Web pages and handle the incoming requests.

Typical server operating systems are Solaris, FreeBSD, Linux and Windows Ser-
ver 200x.

1.4.3 Multiprocessor Operating Systems

An increasingly common way to get major-league computing power is to con-
nect multiple CPUs into a single system. Depending on precisely how they are
connected and what is shared, these systems are called parallel computers,
multicomputers, or multiprocessors. They need special operating systems, but
often these are variations on the server operating systems, with special features
for communication, connectivity, and consistency.

SEC. 1.4 THE @PERATING SYSTEM Z@@ 35

With the recent advent of multicore chips for personal computers, even con-
ventional desktop and notebook operating systems are starting to deal with at least
small-scale multiprocessors and the number of cores is likely to grow over time.
Fortunately, quite a bit is known about multiprocessor operating systems from
years of previous research, so using this knowledge in multicore systems should
not be hard. The hard part will be having applications make use of all this comput-
ing power. Many popular operating systems, including Windows and Linux, run
on multiprocessors.

1.4.4 Personal Computer Operating Systems

The next category is the personal computer operating system. Modern ones all
support multiprogramming, often with dozens of programs started up at boot time.
Their job is to provide good support to a single user. They are widely used for
word processing, spreadsheets, and Internet access. Common examples are Linux,
FreeBSD, Windows Vista, and the Macintosh operating system. Personal com-
puter operating systems are so widely known that probably little introduction is
necded. In fact, many people are not even aware that other kinds exist.

1.4.5 Handheld Computer Operating Systems

Continuing on down to smaller and smaller systems, we come to handheld
computers. A handheld computer or PDA (Personal Digital Assistant) is a small
computer that fits in a shirt pocket and performs a small number of functions,
such as an electronic address book and memo pad. Furthermore, many mobile
phones are hardly any different from PDAs except for the keyboard and screen.
In effect, PDAs and mobile phones have essentially merged, differing mostly in
size, weight, and user interface. Almost all of them are based on 32-bit CPUs with
protected mode and run a sophisticated operating system.

The operating systems that run on these handhelds are increasingly sophisti-
cated, with the ability to handle telephony, digital photography, and other func-
tions. Many of them also run third-party applications. In fact, some of them are
beginning to resemble the personal computer operating systems of a decade ago.
One major difference between handhelds and PCs is that the former do not have
multigigabyte hard disks, which changes a lot. Two of the most popular operating
systems for handhelds are Symbian OS and Palm OS.

1.4.6 Embedded Operating Systems.

Embedded systems run on the computers that control devices that are not gen-
erally thought of as computers and which do not accept user-installed software.
Typical examples are microwave ovens, TV sets, cars, DVD recorders, cell
phones, MP3 players. The main property which distinguishes embedded systems

36 INTRODUCTI®ON CHAP. 1

from handhelds is the certainty that no untrusted software will ever run on it. You
cannot download new applications to your microwave oven—all the software is in
ROM. This means that there is no need for protection between applications, lead-
ing to some simplification. Systems such as QNX and VxWorks are popular in
this domain.

1.4.7 Sensor Node Operating Systems

Networks of tiny sensor nodes are being deployed for numerous purposes.
These nodes are tiny computers that communicate with each other and with a base
station using wireless communication. These sensor networks are used to protect
the perimeters of buildings, guard national borders, detect fires in forests, measure
temperature and precipitation for weather forecasting, glean information about
enemy movements on battlefields, and much more.

The sensors are small battery-powered computers with built-in radios. They
have limited power and must work for long periods of time unattended outdoors,
frequently in environmentally harsh conditions. The network must be robust
enough to tolerate failures of individual nodes, which happen with ever increasing
frequency as the batteries begin to run down.

Each sensor node is a real computer, with a CPU, RAM, ROM, and one or
more environmental sensors. It runs a small,, but real operating system, usually
one that is event driven, responding to external events or making measurements
periodically based on an intemal clock. The operating system has to be small and
simple because the nodes have little RAM and battery lifetime is a major issue.
Also, as with embedded systems, all the programs are loaded in advance; users do
not suddenly start programs they downloaded from the Internet, which makes the
design much simpler. TinyOS is a well-known operating system for a sensor node.

1.4.8 Real-Time Operating Systems

Another type of operating system is the real-time system. These systems are
characterized by having time as a key parameter. For example, in industrial proc-
ess control systems, real-time computers have to collect data about the production
process and use it to control machines in the factory. Often there are hard dead-
lines that must be met. For example, if a car is moving down an assembly line,
certain actions must take place at certain instants of time. If a welding robot
welds too early or too late, the car will be ruined. If the action absolutely must
occur at a certain moment (or within a certain range), we have a hard real-time
system. Many of these are found in industrial process control, avionics, military,
and similar application areas. These systems must provide absolute guarantees
that a certain action will occur by a certain time.

Another kind of real-time system is a soft real-time system, in which missing
an occasional deadline, while not desirable, is acceptable and does not cause any

SEC. 1.4 THE OPERATING SYSTEM ZOO 37

permanent damage. Digital audio or multimedia systems fall in this category.
Digital telephones are also soft real-time systems.

Since meeting strict deadlines is crucial in real-time systems, sometimes the
operating system is simply a library linked in with the application programs, with
everything tightly coupled and no protection between parts of the system. An ex-
ample of this type of real-time system is e-Cos.

The categories of handhelds, embedded systems, and real-time systems over-
lap considerably. Nearly all of them have at least some soft real-time aspects.
The embedded and real-time systems run only software put in by the system de-
signers; users cannot add their own software, which makes protection easier. The
handhelds and embedded systems are intended for consumers, whereas real-time
systems are more for industrial usage. Nevertheless, they have a certain amount in
common.

1.4.9 Smart Card Operating Systems

The smallest operating systems run on smart cards, which are credit card-
sized devices containing a CPU chip. They have very severe processing power
and memory constraints. Some are powered by contacts in the reader into which
they are inserted, but contactless smart cards are inductively powered, which
greatly limits what they can do. Some of them can handle only a single function,
such as electronic payments, but others can handle multiple functions on the same
smart card. Often these are proprietary systems.

Some smart cards are Java oriented. What this means is that the ROM on the
smart card holds an interpreter for the Java Virtual Machine (JVM). Java applets
(small programs) are downloaded to the card and are interpreted by the JVM in-
terpreter. Some of these cards can handle multiple Java applets at the same time,
leading to multiprogramming and the need to schedule them. Resource man-
agement and protection also become an issue when two or more applets are pres-
ent at the same time. These issues must be handled by the (usually extremely
primitive) operating system present on the card.

1.5 OPERATING SYSTEM CONCEPTS

Most operating systems provide certain basic concepts and abstractions such
as processes, address spaces, and files that are central to understanding them. In
the following sections, we will look at some of these basic concepts ever so
briefly, as an introduction. We will come back to each of them in great detail
later in this book. To illustrate these concepts we will use examples from time to
time, generally drawn from UNIX. Similar examples typically exist in other sys-
tems as well, however, and we will study Windows Vista in detail in Chap. 11.

38 INTRO@DUCTI®N CHAP. 1
1.5.1 Processes

A key concept in all operating systems is the process. A process is basically
a program in execution. Associated with each process is its address space, a list
of memory locations from 0 to some maximum, which the process can read and
write. The address space contains the executable program, the program’s data, and
its stack. Also associated with each process is a set of resources, commonly in-
cluding registers (including the program counter and stack pointer), a list of open
files, outstanding alarms, lists of related processes, and all the other information
necded to run the program. A process is fundamentally a container that holds all
the information needed to run a program.

We will come back to the process concept in much more detail in Chap. 2, but
for the time being, the easiest way to get a good intuitive feel for a process is to
think about a multiprogramming system. The user may have a started a video edit-
ing program and instructed it to convert a one-hour video to a certain format
(something that can take hours) and then gone off to surf the Web. Meanwhile, a
background process that wakes up periodically to check for incoming e-mail may
have started running. Thus we have (at least) three active processes: the video edi-
tor, the Web browser, and the e-mail receiver. Periodically, the operating system
decides to stop running one process and start running another; for example, be-
cause the first one has used up more than its share of CPU time in the past second
or two.

When a process is suspended temporarily like this, it must later be restarted in
exactly the same state it had when it was stopped. This means that all information
about the process must be explicitly saved somewhere during the suspension. For
example, the process may have several files open for reading at once. Associated
with each of these files is a pointer giving the current position (i.e., the number of
the byte or record to be read next). When a process is temporarily suspended, all
these pointers must be saved so that a read call executed after the process is
restarted will read the proper data. In many operating systems, all the information
about each process, other than the contents of its own address space, is stored in
an operating system table called the process table, which is an array (or linked
list) of structures, one for each process currently in existence.

Thus, a (suspended) process consists of its address space, usually called the
core image (in honor of the magnetic core memories used in days of yore), and its
process table entry, which contains the contents of its registers and many other
items needed to restart the process later.

The key process management system calls are those dealing with the creation
and termination of processes. Consider a typical example. A process called the
command interpreter or shell reads commands from a terminal. The user has
just typed a command requesting that a program be compiled. The shell must
now create a new process that will run the compiler. When that process has fin-
ished the compilation, it executes a system call to terminate itself.

SEC. 1.5 OPERATING SYSTEM CONCEPTS 39

If a process can create one or more other processes (referred to as child
processes) and these processes in turn can create child processes, we quickly
arrive at the process tree structure of Fig. 1-13. Related processes that are cooper-
ating to get some job done often need to communicate with one another and syn-
chronize their activities. This communication is called interprocess communica-
tion, and will be addressed in detail in Chap. 2.

Figure 1-13. A process tree. Process A created two child processes, B and C.
Process B created three child processes, D, E, and F.

Other process system calls are available to request more memory (or release
unused memory), wait for a child process to terminate, and overlay its program
with a different one.

Occasionally, there is a need to convey information to a running process that
is not sitting around waiting for this information. For example, a process that is
communicating with another process on a different computer does so by sending
messages to the remote process over a computer network. To guard against the
possibility that a message or its reply is lost, the sender may request that its own
operating system notify it after a specified number of seconds, so that it can
retransmit the message if no acknowledgement has been received yet. After set-
ting this timer, the program may continue doing other work.

When the specified number of seconds has elapsed, the operating system
sends an alarm signal to the process. The signal causes the process to temporarily
suspend whatever it was doing, save its registers on the stack, and start running a
special signal handling procedure, for example, to retransmit a presumably lost
message. When the signal handler is done, the running process is restarted in the
state it was in just before the signal. Signals are the software analog of hardware
interrupts and can be generated by a variety of causes in addition to timers expir-
ing. Many traps detected by hardware, such as executing an illegal instruction or
using an invalid address, are also converted into signals to the guilty process.

Each person authorized to use a system is assigned a UID (User IDentifica-
tion) by the system administrator. Every process started has the UID of the person
who started it. A child process has the same UID as its parent. Users can be
members of groups, each of which has a GID (Group IDentification).

One UID, called the superuser (in UNIX), has special power and may violate
many of the protection rules. In large installations, only the system administrator

40 INTRODUCTI®ON CHAP. 1

knows the password needed to become superuser, but many of the ordinary users
(especially students) devote considerable effort to trying to find flaws in the sys-
tem that allow them to become superuser without the password.

We will study processes, interprocess communication, and related issues in
Chap. 2.

1.5.2 Address Spaces

Every computer has some main memory that it uses to hold executing pro-
grams. In a very simple operating system, only one program at a time is in memo-
ry. To run a second program, the first one has to be removed and the second one
placed in memory.

More sophisticated operating systems allow multi'ple programs to be in mem-
ory at the same time. To keep them from interfering with one another (and with
the operating system), some kind of protection mechanism is needed. While this
mechanism has to be in the hardware, it is controlled by the operating system.

The above viewpoint is concerned with managing and protecting the com-
puter’s main memory. A different, but equally important memory-related issue, is
managing the address space of the processes. Normally, each process has some set
of addresses it can use, typically running from O up to some maximum. In the
simplest case, the maximum amount of address space a process has is less than the
main memory. In this way, a process can fill up its address space and there will
be enough room in main memory to hold it all.

However, on many computers addresses are 32 or 64 bits, giving an address
space of 232 or 2% bytes, respectively. What happens if a process has more ad-
dress space than the computer has main memory and the process wants to use it
all? In the first computers, such a process was just out of luck. Nowadays, a tech-
nique called virtual memory exists, as mentioned earlier, in which the operating
system keeps part of the address space in main memory and part on disk and shut-
tles pieces back and forth between them as neceded. In essence, the operating sys-
tem creates the abstraction of an address space as the set of addresses a process
may reference. The address space is decoupled from the machine’s physical mem-
ory, and may be either larger or smaller than the physical memory. Management
of address spaces and physical memory form an important part of what an operat-
ing system does, so all of Chap. 3 is devoted to this topic.

1.5.3 Files

Another key concept supported by virtually all operating systems is the file
system. As noted before, a major function of the operating system is to hide the
peculiarities of the disks and other I/O devices and present the programmer with a
nice, clean abstract model of device-independent files. System calls are obviously

SEC. L.5 OPERATING SYSTEM CONCEPTS 41

necded to create files, remove files, read files, and write files. Before a file can be
read, it must be located on the disk and opened, and after it has been read it should
be closed, so calls are provided to do these things.

To provide a place to keep files, most operating systems have the concept of a
directory as a way of grouping files together. A student, for example, might have
one directory for each course he or she is taking (for the programs needed for that
course), another directory for his electronic mail, and still another directory for his
World Wide Web home page. System calls are then needed to create and remove
directories. Calls are also provided to put an existing file in a directory, and to re-
move a file from a directory. Directory entries may be either files or other direc-

tories. This model also gives rise to a hierarchy—the file system—as shown in
Fig. 1-14.

Root directory

b

Students Faculty
’ -
d ~
Robbert Matty { Leo Prof.Brown Prof.Green Prof.White
\
f L /p //
] 7 ¥
4

S N
Y \ |
Courses Papers Grants Committees
7 .!J f \\
/ /

X

nyny.

SOSP COST-11

=

CS101 CS105

Files

Figure 1-14. A file system for a university department.

The process and file hierarchies both are organized as trees, but the similarity
stops there. Process hierarchies usually are not very deep (more than three levels
is unusual), whereas file hierarchies are commonly four, five, or even more levels
deep. Process hierarchies are typically short-lived, generally minutes at most,
whereas the directory hierarchy may exist for years. Ownership and protection
also differ for processes and files. Typically, only a parent process may control or

42 INTRODUCTI®ON CHAP. 1

even access a child process, but mechanisms nearly always exist to allow files and
directories to be read by a wider group than just the owner.

Every file within the directory hierarchy can be specified by giving its path
name from the top of the directory hierarchy, the root directory. Such absolute
path names consist of the list of directories that must be traversed from the root
directory to get to the file, with slashes separating the components. In Fig. 1-14,
the path for file CS101 is /Faculty/Prof.Brown/Courses/CS101. The leading slash
indicates that the path is absolute, that is, starting at the root directory. As an
aside, in MS-D@®S and Windows, the backslash (\) character is used as the separa-
tor instead of the slash (/) character, so the file path given above would be written
as \Faculty\Prof.Brown\Courses\CS101. Throughout this book we will generally
use the UNIX convention for paths.

At every instant, each process has a current working directory, in which path
names not beginning with a slash are looked for. As an example, in Fig. 1-14, if
/Faculty/Prof.Brown were the working directory, then use of the path name
Courses/CS101 would yield the same file as the absolute path name given above.
Processes can change their working directory by issuing a system call specifying
the new working directory.

Before a file can be read or written, it must be opened, at which time the per-
missions are checked. If the access is permitted, the system returns a small inte-
ger called a file descriptor to use in subsequent operations. If the access is prohi-
bited, an error code is returned.

Another important concept in UNIX is the mounted file system. Nearly all per-
sonal computers have one or more optical drives into which CD-ROMs and DVDs
can be inserted. They almost always have USB ports, into which USB memory
sticks (really, solid state disk drives) can be plugged, and some computers have
floppy disks or external hard disks. To provide an elegant way to deal with these
removable media UNIX allows the file system on a CD-ROM or DVD to be
attached to the main tree. Consider the situation of Fig. 1-15(a). Before the mount
call, the root file system, on the hard disk, and a second file system, on a CD-
ROM, are separate and unrelated.

However, the file system on the CD-ROM cannot be used, because there is no
way to specify path names on it. UNIX does not allow path names to be prefixed
by a drive name or number; that would be precisely the kind of device dependence
that operating systems ought to eliminate. Instead, the mount system call allows
the file system on the CD-ROM to be attached to the root file system wherever the
program wants it to be. In Fig. 1-15(b) the file system on the CD-ROM has been
mounted on directory b, thus allowing access to files /&/x and /b/y. If directory b
had contained any files they would not be accessible while the CD-ROM was
mounted, since /b would refer to the root directory of the CD-ROM. (Not being
able to access these files is not as serious as it at first seems: file systems are
nearly always mounted on empty directories.) If a system contains multiple hard
disks, they can all be mounted into a single tree as well.

SEC. 1.5 OPERATING SYSTEM CONCEPTS 43

Root CD-ROM

a
/
c d C//X y

(@) (b)

Figure 1-15. (a) Before mounting, the files on the CD-ROM are not accessible.
(b) After mounting, they are part of the file hierarchy.

Another important concept in UNIX is the special file. Special files are pro-
vided in order to make I/O devices look like files. That way, they can be read and
written using the same system calls as are used for reading and writing files. Two
kinds of special files exist: block special files and character special files. Block
special files are used to model devices that consist of a collection of randomly ad-
dressable blocks, such as disks. By opening a block special file and reading, say,
block 4, a program can directly access the fourth block on the device, without
regard to the structure of the file system contained on it. Similarly, character spe-
cial files are used to model printers, modems, and other devices that accept or out-
put a character stream. By convention, the special files are kept in the /dev direc-
tory. For example, /dev/Ip might be the printer (once called the line printer).

The last feature we will discuss in this overview is one that relates to both
processes and files: pipes. A pipe is a sort of pseudofile that can be used to con-
nect two processes, as shown in Fig. 1-16. If processes A and B wish to talk using
a pipe, they must set it up in advance. When process A wants to send data to proc-
ess B, it writes on the pipe as though it were an output file. In fact, the imple-
mentation of a pipe is very much like that of a file. Process B can read the data by
reading from the pipe as though it were an input file. Thus, communication be-
tween processes in UNIX looks very much like ordinary file reads and writes.
Stronger yet, the only way a process can discover that the output file it is writing
on is not really a file, but a pipe, is by making a special system call. File systems

are very important. We will have much more to say about them in Chap. 4 and
also in Chaps. 10 and 11.

1.5.4 Input/Output
All computers have physical devices for acquiring input and producing output.

After all, what good would a computer be if the users could not tell it what to do
and could not get the results after it did the work requested? Many kinds of input

44 INTRODUCTI®ON CHAP. 1

Process Process
o = o
e — &3

Figure 1-16. Two processes connected by a pipe.

and output devices exist, including keyboards, monitors, printers, and so on. It is
up to the operating system to manage these devices.

Consequently, every operating system has an I/O subsystem for managing its
I/0 devices. Some of the I/0 software is device independent, that is, applies to
many or all I/O devices equally well. Other parts of it, such as device drivers, are
specific to particular I/O devices. In Chap. 5 we will have a look at I/O software.

1.5.5 Protection

Computers contain large amounts of information that users often want to pro-
tect and keep confidential. This information may include e-mail, business plans,
tax returns, and much more. It is up to the operating system to manage the system
security so that files, for example, are only accessible to authorized users.

As a simple example, just to get an idea of how security can work, consider
UNIX. Files in UNIX are protected by assigning each one a 9-bit binary protection
code. The protection code consists of three 3-bit fields, one for the owner, one for
other members of the owner’s group (users are divided into groups by the system
administrator), and one for everyone else. Each field has a bit for read access, a
bit for write access, and a bit for execute access. These 3 bits are known as the
rwx bits. For example, the protection code rwxr-x--x means that the owner can
read, write, or execute the file, other group members can read or execute (but not
write) the file, and everyone else can execute (but not read or write) the file. For a
directory, x indicates search permission. A dash means that the corresponding
permission is absent.

In addition to file protection, there are many other security issues. Protecting
the system from unwanted intruders, both human and nonhuman (e.g., viruses) is
one of them. We will look at various security issues in Chap. 9.

1.5.6 The Shell

The operating system is the code that carries out the system calls. Editors,
compilers, assemblers, linkers, and command interpreters definitely are not part of
the operating system, even though they are important and useful. At the risk of
confusing things somewhat, in this section we will look briefly at the UNIX com-
mand interpreter, called the shell. Although it is not part of the operating system,
it makes heavy use of many operating system features and thus serves as a good

SE€. LS OPERATING SYSTEM C@ONCEPTS 45

example of how the system calls can be used. It is also the primary interface be-
tween a user sitting at his terminal and the operating system, unless the user is
using a graphical user interface. Many shells exist, including sh, csh, ksh, and
bash. All of them support the functionality described below, which derives from
the original shell (sh).

When any user logs in, a shell is started up. The shell has the terminal as stan-
dard input and standard output. It starts out by typing the prompt, a character
such as a dollar sign, which tells the user that the shell is waiting to accept a com-
mand. If the user now types

date

for example, the shell creates a child process and runs the dafe program as the
child. While the child process is running, the shell waits for it to terminate. When
the child finishes, the shell types the prompt again and tries to read the next input
line.

The user can specify that standard output be redirected to a file, for example,

date >file
Similarly, standard input can be redirected, as in
soit <file1 >file2

which invokes the sort program with input taken from filel and output sent to
file2.

The output of one program can be used as the input for another program by
connecting them with a pipe. Thus

cat file1 file2 file3 | sort >/dev/Ip

invokes the caf program to concetenate three files and send the output to sort to
arrange all the lines in alphabetical order. The output of sort is redirected to the
file /dev/Ip, typically the printer.

If a user puts an ampersand after a command, the shell does not wait for it to
complete. Instead it just gives a prompt immediately. Consequently,

cat file1 file2 file3 | sort >/dev/p &

starts up the sort as a background job, allowing the user to continue working nor-
mally while the sort is going on. The shell has a number of other interesting fea-
tures, which we do not have space to discuss here. Most books on UNIX discuss
the shell at some length (e.g., Kemighan and Pike, 1984; Kochan and Wood,
1990, Medinets, 1999; Newham and Rosenblatt, 1998; and Robbins, 1999).

Many personal computers use a GUI these days. In fact, the GUI is just a pro-
gram running on top of the operating system, like a shell. In Linux systems, this
fact is made obvious because the user has a choice of (at least) two GUIs: Gnome
and KDE or none at all (using a terminal window on X11). In Windows, it is also

46 INTRODUCTI®ON CHAP. 1

possible to replace the standard GUI desktop (Windows Explorer) with a different
program by changing some values in the registry, although few people do this.

1.5.7 Ontogeny Recapitulates Phylogeny

After Charles Darwin’s book On the Origin of the Species was published, the
German zoologist Emst Haeckel stated that “ontogeny recapitulates phylogeny.”
By this he meant that the development of an embryo (ontogeny) repeats (i.e.,
recapitulates) the evolution of the species (phylogeny). In other words, after fer-
tilization, a human egg goes through stages of being a fish, a pig, and so on before
turning into a human baby. Modern biologists regard this as a gross simplification,
but it still has a kernel of truth in it.

Something vaguely analogous has happened in the computer industry. Each
new species (mainframe, minicomputer, personal computer, handheld, embedded
computer, smart card, etc.) seems to go through the development that its ancestors
did, both in hardware and in software. We often forget that much of what hap-
pens in the computer business and a lot of other fields is technology driven. The
reason the ancient Romans lacked cars is not that they liked walking so much. It
is because they did not know how to build cars. Personal computers exist not be-
cause millions of people have a centuries-old pent-up desire to own a computer,
but because it is now possible to manufacture them cheaply. We often forget how
much technology affects our view of systems and it is worth reflecting on this
point from time to time.

In particular, it frequently happens that a change in technology renders some
idea obsolete and it quickly vanishes. However, another change in technology
could revive it again. This is especially true when the change has to do with the
relative performance of different parts of the system. For instance, when CPUs
became much faster than memories, caches became important to speed up the
“slow” memory. If new memory technology someday makes memories much
faster than CPUs, caches will vanish. And if a new CPU technology makes them
faster than memories again, caches will reappear. In biology, extinction is for-
ever, but in computer science, it is sometimes only for a few years.

As a consequence of this impermanence, in this book we will from time to
time look at “obsolete” concepts, that is, ideas that are not optimal with current
technology. However, changes in the technology may bring back some of the so-
called “obsolete concepts.” For this reason, it is important to understand why a
concept is obsolete and what changes in the environment might bring it back
again.

To make this point clearer, let us consider a simple example. Early computers
had hardwired instruction sets. The instructions were executed directly by hard-
ware and could not be changed. Then came microprogramming (first introduced
on a large scale with the IBM 360), in which an underlying interpreter carried out
the “hardware instructions’ in software. Hardwired execution became obsolete.

SEC. 1.5 OPERATING SYSTEM CONCEPTS 47

Not flexible enough. Then RISC computers were invented, and microprogram-
ming (i.e., interpreted execution) became obsolete because direct execution was
faster. Now we are seeing the resurgence of interpretation in the form of Java
applets that are sent over the Internet and interpreted upon arrival. Execution
speed is not always crucial because network delays are so great that they tend to
dominate. Thus the pendulum has already swung several cycles between direct
execution and interpretation and may yet swing again in the future.

Large Memories

Let us now examine some historical developments in hardware and how they
have affected software repeatedly. The first mainframes had limited memory. A
fully loaded IBM 7090 or 7094, which played king of the mountain from late 1959
until 1964, had just over 128 KB of memory. It was mostly programmed in as-
sembly language and its operating system was written in assembly language to
save precious memory.

As time went on, compilers for languages like FORTRAN and COBOL got
good enough that assembly language was pronounced dead. But when the first
commercial minicomputer (the PDP-1) was released, it had only 4096 18-bit
words of memory, and assembly language made a surprise comeback. Eventually,
minicomputers acquircd more memory and high-level languages became pre-
valent on them.

When microcomputers hit in the early 1980s, the first ones had 4-KB mem-
orics and assembly language programming rose from the dead. Embedded com-
puters often used the same CPU chips as the microcomputers (8080s, Z80s, and
later 8086s) and were also programmed in assembler initially. Now their descen-
dants, the personal computers, have lots of memory and are programmed in C,
C++, Java, and other high-level languages. Smart cards are undergoing a similar
development, although beyond a certain size, the smart cards often have a Java
interpreter and execute Java programs interpretively, rather than having Java
being compiled to the smart card’s machine language.

Protection Hardware

Early mainframes, like the IBM 7090/7094, had no protection hardware, so
they just ran one program at a time. A buggy program could wipe out the operat-
ing system and easily crash the machine. With the introduction of the IBM 360, a
primitive form of hardware protection became available and these machines could
then hold several programs in memory at the same time and let them take tumns
running (multiprogramming). Monoprogramming was declared obsolete.

At least until the first minicomputer showed up—without protection hard-
ware—so multiprogramming was not possible. Although the PDP-1 and PDP-8

48 INTRODUCTI®ON CHAP. 1

had no protection hardware, eventually the PDP-11 did, and this feature led to
multiprogramming and eventually to UNIX.

When the first microcomputers were built, they used the Intel 8080 CPU chip,
which had no hardware protection, so we were back to monoprogramming. It
wasn’t until the Intel 80286 that protection hardware was added and multipro-
gramming became possible. Until this day, many embedded systems have no pro-
tection hardware and run just a single program.

Now let us look at operating systems. The first mainframes initially had no
protection hardware and no support for multiprogramming, so they ran simple op-
erating systems that handled one manually loaded program at a time. Later they
acquired the hardware and operating system support to handle multiple programs
at once, and then full timesharing capabilities.

When minicomputers first appeared, they also had no protection hardware and
ran one manually loaded program at a time, even though multiprogramming was
well established in the mainframe world by then. Gradually, they acquired protec-
tion hardware and the ability to run two or more programs at once. The first
microcomputers were also capable of running only one program at a time, but
later acquired the ability to multiprogram. Handheld computers and smart cards
went the same route.

In all cases, the software development was dictated by technology. The first
microcomputers, for example, had something like 4 KB of memory and no protec-
tion hardware. High-level languages and multiprogramming were simply too
much for such a tiny system to handle. As the microcomputers evolved into mod-
em personal computers, they acquired the necessary hardware and then the neces-
sary software to handle more advanced features. It is likely that this development
will continue for years to come. Other ficlds may also have this wheel of reincar-
nation, but in the computer industry it seems to spin faster.

Disks

Early mainframes were largely magnetic-tape based. They would read in a
program from tape, compile it, run it, and write the results back to another tape.
There were no disks and no concept of a file system. That began to change when
IBM introduced the first hard disk—the RAMAC (RAndoM ACcess) in 1956. It
occupied about 4 square meters of floor space and could store 5 million 7-bit char-
acters, enough for one medium-resolution digital photo. But with an annual rental
fee of $35,000, assembling enough of them to store the equivalent of a roll of film
got pricey quite fast. But eventually prices came down and primitive file systems
were developed.

Typical of these new developments was the CDC 6600, introduced in 1964
and for years by far the fastest computer in the world. Users could create so-called
“permanent files” by giving them names and hoping that no other user had also
decided that, say, “data” was a suitable name for a file. This was a single-level

SEC. 1.5 OPERATING SYSTEM CONCEPTS 49

directory. Eventually, mainframes developed complex hierarchical file systems,
perhaps culminating in the MULTICS file system.

As minicomputers came into use, they eventually also had hard disks. The
standard disk on the PDP-11 when it was introduced in 1970 was the RKOS5 disk,
with a capacity of 2.5 MB, about half of the IBM RAMAC, but it was only about
40 cm in diameter and 5 cm high. But it, too, had a single-level directory initially.
When microcomputers came out, CP/M was initially the dominant operating sys-
tem, and it, too, supported just one directory on the (floppy) disk.

Virtual Memory

Virtual memory (discussed in Chap. 3), gives the ability to run programs larg-
er than the machine’s physical memory by moving pieces back and forth between
RAM and disk. It underwent a similar development, first appearing on main-
frames, then moving to the minis and the micros. Virtual memory also enabled the
ability to have a program dynamically link in a library at run time instead of hav-
ing it compiled in. MULTICS was the first system to allow this. Eventually, the
idea propagated down the line and is now widely used on most UNIX and Win-
dows systems.

In all these developments, we see ideas that are invented in one context and
later thrown out when the context changes (assembly language programming,
menoprogramming, single-level directories, etc.) only to reappear in a different
context often a decade later. IFor this reason in this book we will sometimes look
at ideas and algorithms that may seem dated on today’s gigabyte PCs, but which
may soon come back on embedded computers and smart cards.

1.6 SYSTEM CALLS

We have seen that operating systems have two main functions: providing
abstractions to user programs and managing the computer’s resources. For the
mest part, the interaction between user programs and the operating system deals
with the former; for example, creating, writing, reading, and deleting files. The re-
source management part is largely transparent to the users and done automat-
ically. Thus the interface between user programs and the operating system is pri-
marily about dealing with the abstractions. To really understand what operating
systems do, we must examine this interface closely. The system calls available in
the interface vary from operating system to operating system (although the under-
lying concepts tend to be similar).

We are thus forced to make a choice between (1) vague generalities (“operat-
ing systems have system calls for reading files”’) and (2) some specific system
(“UNIX has a read system call with three parameters: one to specify the file, one
to tell where the data are to be put, and one to tell how many bytes to read’).

SO INTRODUCTI®ON CHAP. 1

We have chosen the latter approach. It’s more work that way, but it gives
mere insight into what operating systems really do. Although this discussion spe-
cifically refers to POSIX (International Standard 9945-1), hence also to UNIX,
System V, BSD, Linux, MINIX 3, and so on, most other modern operating systems
have system calls that perform the same functions, even if the details differ. Since
the actual mechanics of issuing a system call are highly machine dependent and
often must be expressed in assembly code, a procedure library is provided to make
it possible to make system calls from C programs and often from other languages
as well.

It is useful to keep the following in mind. Any single-CPU computer can exe-
cute only one instruction at a time. If a process is running a user program in user
mede and needs a system service, such as reading data from a file, it has to exe-
cute a trap instruction to transfer control to the operating system. The operating
system then figures out what the calling process wants by inspecting the parame-
ters. Then it carries out the system call and returns control to the instruction fol-
lowing the system call. In a sense, making a system call is like making a special
kind of procedure call, only system calls enter the kernel and procedure calls do
not.

To make the system call mechanism clearer, let us take a quick look at the
read system call. As mentioned above, it has three parameters: the first one speci-
fying the file, the second one pointing to the buffer, and the third one giving the
number of bytes to read. Like nearly all system calls, it is invoked from C pro-
grams by calling a library procedure with the same name as the system call: read.
A call from a C program might look like this:

count = read(fd, buffer, nbytes);

The system call (and the library procedure) return the number of bytes actually
read in count. This value is normally the same as nbyfes, but may be smaller, if,
for example, end-of -file is encountered while reading.

If the system call cannot be carried out, either due to an invalid parameter or a
disk error, count is set to —1, and the error number is put in a global variable,
errnio. Programs should always check the results of a system call to see if an error
occurred.

System calls are performed in a series of steps. To make this concept clearer,
let us examine the read call discussed above. In preparation for calling the read
library procedure, which actually makes the read system call, the calling program
first pushes the parameters onto the stack, as shown in steps 1-3 in Fig. 1-17.

C and C++ compilers push the parameters onto the stack in reverse order for
historical reasons (having to do with making the first parameter to printf, the for-
mat string, appear on top of the stack). The first and third parameters are called
by value, but the second parameter is passed by reference, meaning that the ad-
dress of the buffer (indicated by &) is passed, not the contents of the buffer. Then

SEC. 1.6 SYSTEM CALLS 51

Address
OXFFFFFFFF _
Return to caller Libras
Trap to the kernel procezure
5| Put code for read in register read
10
4
User space v
Increment SP L
~ Call read
3| Pushfd User program
2| Push &buifer calling read
1| Push nbytes
6 9
A
' * T
Kernel space i ' 8 | Sys call
(Operating system) < Bspalel i handler
0

Figure 1-17. Thz 11 steps in making the system call read(fd, buffer, nbytes).

comes the actual call to the library procedure (step 4). This instruction is the nor-
mal procedure call instruction used to call all procedures.

The library procedure, possibly written in assembly language, typically puts
the system call number in a place where the operating system expects it, such as a
register (step 5). Then it executes a TRAP instruction to switch from user mode to
kemel mode and start execution at a fixed address within the kernel (step 6). The
TRAP instruction is actually fairly similar to the procedure call instruction in the
sense that the instruction following it is taken from a distant location and the re-
turn address is saved eon the stack for use later.

Nevertheless, the TRAP instruction also differs from the procedure call in-
struction in two fundamental ways. First, as a side effect, it switches into kernel
mode. The procedure call instruction does not change the mode. Second, rather
than giving a relative or absolute address where the procedure is located, the TRAP
instruction cannot jump to an arbitrary address. Depending on the architecture, it
either jumps to a single fixed location, there is an 8-bit field in the instruction giv-
ing the index into a table in memory containing jump addresses, or equivalent.

The kemel code that starts following the TRAP examines the system call num-
ber and then dispatches to the correct system call handler, usually via a table of

S2 INTRODUCTI®ON CHAP. 1

pointers to system call handlers indexed on system call number (step 7). At that
point the system call handler runs (step 8). Once the system call handler has com-
pleted its work, control may be returned to the user-space library procedure at the
instruction following the TRAP instruction (step ®). This procedure then returns to
the user program in the usual way procedure calls return (step 10).

To finish the job, the user program has to clean up the stack, as it does after
any procedure call (step 11). Assuming the stack grows downward, as it often
does, the compiled cede increments the stack pointer exactly enough to remove
the parameters pushed before the call to read. The program is now free to do
whatever it wants to do next.

In step ® above, we said “may be returned to the user-space library proce-
dure” for good reason. The system call may block the caller, preventing it from
continuing. For example, if it is trying to read from the keyboard and nothing has
been typed yet, the caller has to be blocked. In this case, the operating system
will look around to see if some other process can be run next. Later, when the
desired input is available, this process will get the attention of the system and
steps 9—11 will occur.

In the following sections, we will examine some of the most heavily used
POSIX system calls, or more specifically, the library procedures that make those
system calls. POSIX has about 100 procedure calls. Some of the most important
ones are listed in Fig. 1-18, grouped for convenience in feur categories. In the
text we will briefly examine each call to see what it does.

To a large extent, the services offered by these calls determine most of what
the operating system has to do, since the resource management on personal com-
puters is minimal (at least compared to big machines with multiple users). The
services include things like creating and terminating processes, creating, deleting,
reading, and writing files, managing directories, and performing input and output.

As an aside, it is worth pointing out that the mapping of POSIX procedure
calls onto system calls is not one-to-one. The POSIX standard specifies a number
of procedures that a conformant system must supply, but it does not specify
whether they are system calls, library calls, or something else. If a procedure can
be carried out without invoking a system call (i.e., without trapping to the kemel),
it will usually be done in user space for reasons of performance. However, most of
the POSIX procedures do invoke system calls, usually with one procedure map-
ping directly onto one system call. In a few cases, especially where several re-
quired procedures are only minor variations of one another, one system call hand-
les more than one library call.

1.6.1 System Calls for Process Management
The first group of calls in Fig. 1-18 deals with process management. Fork is a

good place to start the discussion. Fork is the only way to create a new process in
POSIX. It creates an exact duplicate of the original process, including all the file

SEC. 1.6 SYSTEM CALLS S3
Process management
Call Description
pid = fork() Create a child process identical to the parent

pid = waitpid(pid, &statloc, options)

Wait for a child to terminate

s = execve(name, argv, environp)

Replace a process’ core image

exit(status) Terminate process execution and return status
File management
Call Description
fd = open(file, how, ...) Open afile for reading, writing, or both
s = close(fd) Close an open file

n = read(fd, buffer, nbytes)

Read data from a file into a buffer

n = write(fd, buffer, nbytes)

Write data from a buffer into a file

position = Iseek(fd, offset, whence)

Move the file pointer

s = stat(name, &buf)

Get a file’s status information

Directory and file system management

Call

Description

s = mkdir(name, mode)

Create a new directory

s = rmdir(name)

Remove an empty directory

s = link(name1, name2)

Create a new entry, name2, pointing to name

s = unlink(name)

Remove a directory entry

s = mount(special, name, flag)

Mount a file system

s = umount(special)

Unmount a file system

Mis

cellaneous

Call

Description

s = chdir(dirname)

Change the working directory

s = chmod(name, mode)

Change a file’s protection bits

s = kill(pid, signal)

Send a signal to a process

seconds = time(&seconds)

Get the elapsed time since Jan. 1, 1970

Figure 1-18. Some of the major POSIX system calls. The return code s is -1 if
an error has occurred. The return codes are as follows: pid is a process id, fd is a
file descriptor, 7 is a byte count, position is an off set within the file, and seconds
is the elapsed time. The parameters are explained in the text.

54 INTRODUCTI®ON CHAP. 1

descriptors, registers—everything. After the fork, the original process and the
copy (the parent and child) go their separate ways. All the variables have identical
values at the time of the fork, but since the parent’s data are copied to create the
child, subsequent changes in one of them do not affect the other one. (The pro-
gram text, which is unchangeable, is shared between parent and child.) The fork
call returns a value, which is zero in the child and equal to the child’s process
identifier or PID in the parent. Using the returned PID, the two processes can see
which one is the parent process and which one is the child process.

In most cases, after a fork, the child will need to execute different code from
the parent. Consider the case of the shell. It reads a command from the terminal,
forks off a child process, waits for the child to execute the command, and then
reads the next command when the child terminates. To wait for the child to fin-
ish, the parent executes a waitpid system call, which just waits until the child ter-
minates (any child if more than one exists). Waitpid can wait for a specific child,
or for any old child by setting the first parameter to —1. When waitpid completes,
the address pointed to by the second parameter, statloc, will be set to the child’s
exit status (normal or abnormal termination and exit value). Various options are
also provided, specified by the third parameter.

Now consider how fork is used by the shell. When a command is typed, the
shell forks off a new process. This child process must execute the user command.
It does this by using the execve system call, which causes its entire core image to
be replaced by the file named in its first parameter. (Actually, the system call it-
self is exec, but several library procedures call it with different parameters and
slightly different names. We will treat these as system calls here.) A highly sim-
plified shell illustrating the use of fork, waitpid, and execve is shown in Fig. 1-19.

#define TRUE 1

while (TRUE) { /= repeat forever */
type_ prompt(); /* display prompt on the screen */
read_command(command, parameters); /* read input from terminal */
if (fork() = 0) { /* fork off child process */
/* Parent code. */
waitpid(-1, &status, 0); /* wait for child to exit */
} else {
/= Child code. */
execve(command, parameters, 0); /* execute command */

}

Figure 1-19. A stripped-down shell. Throughout this book, TRUE is assumed to
be defined as 1.

In the most general case, execve has three parameters: the name of the file to
be executed, a pointer to the argument array, and a pointer to the environment

SEC. 1.6 SYSTEM CALLS S§

array. These will be described shortly. Various library routines, including execl,
execv, execle, and execve, are provided to allow the parameters to be omitted or
specified in various ways. Throughout this book we will use the name exec to
represent the system call invoked by all of these.

Let us consider the case of a command such as

cp file1 file2

used to copy filel to file2. After the shell has forked, the child process locates and
executes the file cp and passes to it the names of the source and target files.

The main program of cp (and main program of most other C programs) con-
tains the declaration

main(argc, argv, envp)

where argc is a count of the number of items on the command line, including the
program name. For the example above, argc is 3.

The second parameter, argv, is a pointer to an array. Element i of that array is
a pointer to the i-th string on the command line. In our example, argv[0] would
point to the string “cp”, argv[l] would point to the string “filel” and argv[2]
would point to the string “file2”’.

The third parameter of main, envp, is a pointer to the environment, an array of
strings containing assignments of the form name = value used to pass information
such as the terminal type and home directory name to programs. There are library
procedures that programs can call to get the environment variables, which are
often used to customize how a user wants to perform certain tasks (e.g., the
default printer to use). In Fig. 1-19, no environment is passed to the child, so the
third parameter of execve is a zero.

If exec seems complicated, do not despair; it is (semantically) the most com-
plex of all the POSIX system calls. All the other ones are much simpler. As an
example of a simple one, consider exit, which processes should use when they are
finished executing. It has one parameter, the exit status (O to 255), which is re-
turned to the parent via statloc in the waitpid system call.

Processes in UNIX have their memory divided up into three segments: the text
segment (i.c., the program code), the data segment (i.c., the variables), and the
stack segment. The data segment grows upward and the stack grows downward,
as shown in Fig. 1-20. Between them is a gap of unused address space. The stack
grows into the gap automatically, as needed, but expansion of the data segment is
done explicitly by using a system call, brk, which specifies the new address where
the data segment is to end. This call, however, is not defined by the POSIX stan-
dard, since programmers are encouraged to use the malloc library procedure for
dynamically allocating storage, and the underlying implementation of malloc was
not thought to be a suitable subject for standardization since few programmers use
it directly and it is doubtful that anyone even notices that brk is not in POSIX.

56 INTRODUCTION CHAP. 1

Address (hex)

FFFF
Smckl
Gap gfﬁ
g
Data
Text
0000

Figure 1-20. Processes have three segments: text, data, and stack.

1.6.2 System Calls for File Management

Many system calls relate to the file system. In this section we will look at
calls that operate on individual files; in the next one we will examine those that
involve directories or the file system as a whole.

To read or write a file, the file must first be opened using open. This call
specifies the file name to be opened, either as an absolute path name or relative to
the working directory, and a code of O_RDONLY, @ _WRONLY, or O_RDWR,
meaning open for reading, writing, or both. To create a new file, the O_CREAT
parameter is used. The file descriptor returned can then be used for reading or
writing. Afterward, the file can be closed by close, which makes the file descrip-
tor available for reuse on a subsequent open.

The most heavily used calls are undoubtedly read and write. We saw read
carlier. Write has the same parameters.

Although most programs read and write files sequentially, for some applica-
tions programs need to be able to access any part of a file at random. Associated
with each file is a pointer that indicates the current position in the file. When read-
ing (writing) sequentially, it normally points to the next byte to be read (written).
The Iseek call changes the value of the position pointer, so that subsequent calls to
read or write can begin anywhere in the file.

Lseek has three parameters: the first is the file descriptor for the file, the sec-
ond is a file position, and the third tells whether the file position is relative to the
beginning of the file, the current position, or the end of the file. The value re-
turned by Iseek is the absolute position in the file (in bytes) after changing the
pointer.

For each file, UNIX keeps track of the file mode (regular file, special file, di-
rectory, and so on), size, time of last modification, and other information. Pro-
grams can ask to see this information via the stat system call. The first parameter
specifies the file to be inspected; the second one is a pointer to a structure where
the information is to be put. The fstat calls does the same thing for an open file.

SEC. 1.6 SYSTEM CALLS 57
1.6.3 System Calls for Directory Management

In this section we will look at some system calls that relate more to directories
or the file system as a whole, rather than just to one specific file as in the previous
section. The first two calls, mkdir and rmdir, create and remove empty directories,
respectively. The next call is link. Its purpose is to allow the same file to appear
under two or more names, often in different directories. A typical use is to allow
several members of the same programming team to share a common file, with
each of them having the file appear in his own directory, possibly under different
names. Sharing a file is not the same as giving every team member a private copy;
having a shared file means that changes that any member of the team makes are
instantly visible to the other members—there is only one file. When copies are
made of a file, subsequent chaiiges made to one copy do not affect the others.

To see how link works, consider the situation of Fig. 1-21(a). Here are two
users, ast and jim, each having his own directory with some files. If st now exe-
cutes a program containing the system call

link("/usr/jim/memo", “/usr/ast/note");

the file memo in jin?’s directory is now entered into ast’s directory under the name
note. Thereafter, /usr/jim/memo and /usr/ast/note refer to the same file. As an
aside, whether user directories are kept in /usr, /user, /home, or somewhere else is
simply a decision made by the local system administrator.

/usr/ast fusr/jim /ust/ast /usr/jim
16 | mail 31 | bin 16 | malil 31 | bin
81 | games 70 | memo 81 | games 70 | memo
40 | test 59 |f.c. 40 | test 59 | f.c.

38 | progtl 70 | note 38 | progl

(@) (b)

Figure 1-21. (a) Two directories before linking /usr/jim/memo to ast’s directory.
(b) The same directories after linking.

Understanding how link works will probably make it clearer what it does.
Every file in UNIX has a unique number, its i-number, that identifies it. This i-
number is an index into a table of i-nodes, one per file, telling who owns the file,
where its disk blocks are, and so on. A directory is simply a file containing a set
of (i-number, ASCII name) pairs. In the first versions of UNIX, each directory
entry was 16 bytes—2 bytes for the i-number and 14 bytes for the name. Now a
more complicated structure is needed to support long file names, but conceptually
a directory is still a set of (i-number, ASCII name) pairs. In Fig. 1-21, mail has i-
number 16, and so on. What link does is simply create a new directory entry with a
(possibly new) name, using the i-number of an existing file. In Fig. 1-21(b), two

S8 INTRODUCTI®ON CHAP. 1

entries have the same i-number (7@) and thus refer to the same file. If either one
is later removed, using the unlink system call, the other one remains. If both are
removed, UNIX 00sees that no entries to the file exist (a field in the i-node keeps
track of the number of directory entries pointing to the file), so the file is removed
from the disk.

As we have mentioned earlier, the mount system call allows two file systems
to be merged into one. A common situation is to have the root file system con-
taining the binary (executable) versions of the common commands and other
heavily used files, on a hard disk. The user can then insert a CD-ROM disk with
files to be read into the CD-ROM drive.

By executing the mount system call, the CD-ROM file system can be attached
to the root file system, as shown in Fig. 1-22. A typical statement in C to perform
the mount is

mount("/dev/fd0", "/mnt", 0);

where the first parameter is the name of a block special file for drive @, the second
parameter is the place in the tree where it is to be mounted, and the third parame-
ter tells whether the file system is to be mounted read-write or read-only.

bin dev lib mnt usr bin dev lib usr

(a) (b)

Figure 1-22. (a) File system before the mount. (b) File system after the mount.

After the mount call, a file on drive 0 can be accessed by just using its path
from the root directory or the working directory, without regard to which drive it
is on. In fact, second, third, and fourth drives can also be mounted anywhere in
the tree. The mount call makes it possible to integrate removable media into a
single integrated file hierarchy, without having to worry about which device a file
is on. Although this example involves CD-ROMs, portions of hard disks (often
called partitions or minor devices) can also be mounted this way, as well as ex-
ternal hard disks and USB sticks. When a file system is no longer needed, it can
be unmounted with the umount system call.

1.6.4 Miscellaneous System Calls

A variety of other system calls exist as well. We will look at just four of them
here. The chdir call changes the current working directory. After the call

chdir("/usr/ast/test"),

SEC. 1.6 SYSTEM CALLS S9

an open on the file xyz will open /usr/ast/test/xyz. The concept of a working di-
rectory eliminates the need for typing (long) absolute path names all the time.

In UNIX every file has a mode used for protection. The mode includes the
read-write-execute bits for the owner, group, and others. The chmod system call
makes it possible to change the mode of a file. For example, to make a file read-
only by everyone except the owner, one could execute

chmod("file", 0644);

The Kill system call is the way users and user processes send signals. If a
process is prepared to catch a particular signal, then when it arrives, a signal hand-
ler is run. If the process is not prepared to handle a signal, then its arrival kills the
process (hence the name of the call).

POSIX defines several procedures for dealing with time. For example, time
just returns the current time in seconds, with O corresponding to Jan. 1, 1970 at
midnight (just as the day was starting, not ending). On computers using 32-bit
words, the maximum value time can return is 232 — 1 seconds (assuming an un-
signed integer is used). This value corresponds to a little over 136 years. Thus in
the year 2106, 32-bit UNIX systems will go berserk, not unlike the famous Y2K
problem that would have wreaked havoc with the world’s computers in 2000,
were it not for the massive effort the IT industry put into fixing the problem. If
you currently have a 32-bit UNIX system, you are advised to trade it in for a 64-bit
one sometime before the year 2106.

1.6.S The Windows Win32 API

So far we have focused primarily on UNIX. Now it is time to look briefly at
Windows. Windows and UNIX differ in a fundamental way in their respective
programming models. A UNIX program consists of code that does something or
other, making system calls to have certain services performed. In contrast, a Win-
dows program is normally event driven. The main program waits for some event
to happen, then calls a procedure to handle it. Typical events are keys being
struck, the mouse being moved, a mouse button being pushed, or a CD-ROM
inserted. Handlers are then called to process the event, update the screen and
update the internal program state. All in all, this leads to a somewhat different
style of programming than with UNIX, but since the focus of this book is on oper-
ating system function and structure, these different programming models will not
concern us much more.

Of course, Windows also has system calls. With UNIX, there is almost a one-
to-one relationship between the system calls (e.g., read) and the library proce-
dures (e.g., read) used to invoke the system calls. In other words, for each system
call, there is roughly one library procedure that is called to invoke it, as indicated
in Fig. 1-17. Furthermore, POSIX has only about 100 procedure calls.

60 INTRODUCTI®ON CHAP. 1

With Windows, the situation is radically different. To start with, the library
calls and the actual system calls are highly decoupled. Microsoft has defined a set
of procedures called the Win32 API (Application Program Interface) that pro-
grammers are expected to use to get operating system services. This interface is
(partially) supported on all versions of Windows since Windows 95. By decou-
pling the interface from the actual system calls, Microsoft retains the ability to
change the actual system calls in time (even from release to release) without
invalidating existing programs. What actually constitutes Win32 is also slightly
ambiguous because Windows 2000, Windows XP, and Windows Vista have many
new calls that were not previously available. In this section, Win32 means the in-
terface supported by all versions of Windows.

The number of Win32 API calls is extremely large, numbering in the
thousands. Furthermore, while many of them do invoke system calls, a substantial
number are carried out entirely in user space. As a consequence, with Windows it
is impossible to see what is a system call (i.e., performed by the kernel) and what
is simply a user-space library call. In fact, what is a system call in one version of
Windows may be done in user space in a different version, and vice versa. When
we discuss the Windows system calls in this book, we will use the Win32 proce-
dures (where appropriate) since Microsoft guarantees that these will be stable
over time. But it is worth remembering that not all of them are true system calls
(i.e., traps to the kernel).

The Win32 API has a huge number of calls for managing windows, geometric
figures, text, fonts, scrollbars, dialog boxes, menus, and other features of the GUIL
To the extent that the graphics subsystem runs in the kernel (true on some ver-
sions of Windows but not on all), these are system calls; otherwise they are just li-
brary calls. Should we discuss these calls in this book or not? Since they are not
really related to the function of an operating system, we have decided not to, even
though they may be carried out by the kernel. Readers interested in the Win32
API should consult one of the many books on the subject (e.g., Hart, 1997; Rector
and Newcomer, 1997; and Simon, 1997).

Even introducing all the Win32 API calls here is out of the question, so we
will restrict ourselves to those calls that roughly correspond to the functionality of
the UNIX calls listed in Fig. 1-18. These are listed in Fig. 1-23.

Let us now briefly go through the list of Fig. 1-23. CreateProcess creates a
new process. It does the combined work of fork and execve in UNIX. It has many
parameters specif ying the properties of the newly created process. Windows does
not have a process hierarchy as UNIX does so there is no concept of a parent proc-
ess and a child process. After a process is created, the creator and createe are
cquals. WaitForSingleObiject is used to wait for an event. Many possible events
can be waited for. If the parameter specifies a process, then the caller waits for
the specified process to exit, which is done using ExitProcess.

The next six calls operate on files and are functionally similar to their UNIX
counterparts although they differ in the parameters and details. Still, files can be

SEC. 1.6 SYSTEM CALLS 61

UNIX Win32 Description
fork CreateProcess Create a new process
waitpid | WaitForSingleObject| Can wait for a process to exit
execve | (none) CreateProcess = fork + execve
exit ExitProcess Terminate execution
open CreateFile Create afile or open an existing file
close CloseHandle Close afile
read ReadFile Read data from a file
write WriteFile Write data to a file
Iseek SetFilePointer Move the file pointer
stat GetFileAttributesEx | Get various file attributes
mkdir CreateDirectory Create a new directory
rmdir RemoveDirectory Remove an empty directory
link (none) Win32 does not support links
unlink | DeleteFile Destroy an existing file
mount | (none) Win32 does not support mount
umount | (none) Win32 does not support mount
chdir SetCurrentDirectory | Change the current working directory
chmod | (none) Win32 does not support security (although NT does)
kill (none) Win32 does not support signals
time GetLocalTime Get the current time

Figure 1-23. The Win32 API calls that roughly correspond to the UNIX calls of
Fig. 1-18.

opened, closed, read, and written pretty much as in UNIX. The SetFilePointer and
GetFileAttributesEx calls set the file position and get some of the file attributes.

Windows has directories and they are created with CreateDirectory and Re-
moveDirectory API calls, respectively. There is also a notion of a current direc-
tory, set by SetCurrentDirectory. The current time of day is acquired using GetlLo-
calTime.

The Win32 interface does not have links to files, mounted file systems, secu-
rity, or signals, so the calls corresponding to the UNIX ones do not exist. Of
course, Win32 has a huge number of other calls that UNIX does not have, espe-
cially for managing the GUL. And Windows Vista has an elaborate security sys-
tem and also supports file links.

One last note about Win32 is perhaps worth making. Win32 is not a terribly
uniform or consistent interface. The main culprit here was the need to be back-
ward compatible with the previous 16-bit interface used in Windows 3.x.

62 INTRODUCTI®ON CHAP. 1

1.7 OPERATING SYSTEM STRUCTURE

Now that we have seen what operating systems look like on the outside (i.e.,
the programmer’s interface), it is time to take a look inside. In the following sec-
tions, we will examine six different structures that have been tried, in order to get
some idea of the spectrum of possibilities. These are by no means exhaustive, but
they give an idea of some designs that have been tried in practice. The six designs
are monolithic systems, layered systems, microkernels, client-server systems, vir-
tual machines, and exokernels.

1.7.1 Monolithic Systems

By far the most common organization, in this approach the entire operating
system runs as a single program in kernel mode. The operating system is written
as a collection of procedures, linked together into a single large executable binary
program. When this technique is used, each procedure in the system is free to call
any other one, if the latter provides some useful computation that the former
needs. Having thousands of procedures that can call each other without restriction
often leads to an unwicldy and difficult to understand system.

To construct the actual object program of the operating system when this ap-
proach is used, one first compiles all the individual procedures (or the files con-
taining the procedures) and then binds them all together into a single executable
file using the system linker. In terms of information hiding, there is essentially
none—every procedure is visible to every other procedure (as opposed to a struc-
ture containing modules or packages, in which much of the information is hidden
away inside modules, and only the officially designated entry points can be called
from outside the module).

Even in monolithic systems, however, it is possible to have some structure.
The services (system calls) provided by the operating system are requested by put-
ting the parameters in a well-defined place (e.g., on the stack) and then executing
a trap instruction. This instruction switches the machine from user mode to kernel
mode and transfers control to the operating system, shown as step 6 in Fig. 1-17.
The operating system then fetches the parameters and determines which system
call is to be carried out. After that, it indexes into a table that contains in slot k a
pointer to the procedure that carries out system call k£ (step 7 in Fig. 1-17).

This organization suggests a basic structure for the operating system:

1. A main program that invokes the requested service procedure.
2. A set of service procedures that carry out the system calls.
3. A set of utility procedures that help the service procedures.

In this model, for each system call there is one service procedure that takes care
of it and executes it. The utility procedures do things that are necded by several

SEC. 14 O®PERATING SYSTEM STRUCTURE 63

service procedures, such as fetching data from user programs. This division of the
procedures into three layers is shown in Fig. 1-24.

Main
procedure

Service
procedures

Utility
procedures

Figure 1-24. A simple structuring model for a monolithic system.

In addition to the core operating system that is loaded when the computer is
booted, many operating systems support loadable extensions, such as I/O device
drivers and file systems. These components are loaded on demand.

1.7.2 Layered Systems

A generalization of the approach of Fig. 1-24 is to organize the operating sys-
tem as a hierarchy of layers, each one constructed upon the one below it. The first
system constructed in this way was the THE system built at the Technische
Hogeschool Eindhoven in the Netherlands by E. W. Dijkstra (1968) and his stu-
dents. The THE system was a simple batch system for a Dutch computer, the
Electrologica X8, which had 32K of 27-bit words (bits were expensive back then).

The system had six layers, as shown in Fig. 1-25. Layer O dealt with alloca-
tion of the processor, switching between processes when interrupts occurred or
timers expired. Above layer 0, the system consisted of sequential processes, each
of which could be programmed without having to worry about the fact that multi-
ple processes were running on a single processor. In other words, layer O pro-
vided the basic multiprogramming of the CPU.

Layer 1 did the memory management. It allocated space for processes in
main memory and on a 512K word drum used for holding parts of processes
(pages) for which there was no room in main memory. Above layer 1, processes
did not have to worry about whether they were in memory or on the drum; the lay-
er | software took care of making sure pages were brought into memory whenever
they were needed.

Layer 2 handled communication between each process and the operator con-
sole (that is, the user). On top of this layer each process effectively had its own

64 INTRODUCTI®ON CHAP. 1

Layer Function
5 The operator
4 User programs
8 Input/out put management
2 Operator-process communication
1 Memory and drum management
0 :Prooes:sor allocation :and mQItiprogrémming

Figure 1-25. Structure of the THE operating system.

operator console. Layer 3 took care of managing the I/0 devices and buffering
the information streams to and from them. Above layer 3 each process could deal
with abstract I/O devices with nice properties, instead of real devices with many
peculiarities. Layer 4 was where the user programs were found. They did not
have to worry about process, memory, console, or I/O management. The system
operator process was located in layer 5.

A further generalization of the layering concept was present in the MULTICS
system. Instead of layers, MULTICS was described as having a series of concen-
tric rings, with the inner ones being more privileged than the outer ones (which is
effectively the same thing). When a procedure in an outer ring wanted to call a
procedure in an inner ring, it had to make the equivalent of a system call, that is, a
TRAP instruction whose parameters were carefully checked for validity before al-
lowing the call to proceed. Although the entire operating system was part of the
address space of each user process in MULTICS, the hardware made it possible to
designate individual procedures (memory segments, actually) as protected against
reading, writing, or executing.

Whereas the THE layering scheme was really only a design aid, because all
the parts of the system were ultimately linked together into a single executable
program, in MULTICS, the ring mechanism was very much present at run time
and enforced by the hardware. The advantage of the ring mechanism is that it can
casily be extended to structure user subsystems. For example, a professor could
write a program to test and grade student programs and run this program in ring n,
with the student programs running in ring # + 1 so that they could not change their
grades.

1.7.3 Microkernels

With the layered approach, the designers have a choice where to draw the
kemel-user boundary. Traditionally, all the layers went in the kernel, but that is
not necessary. In fact, a strong case can be made for putting as little as possible in

SEC. 1.1 OPERATING SYSTEM STRUCTURE 65

kemel mode because bugs in the kernel can bring down the system instantly. In
contrast, user processes can be set up to have less power so that a bug there may
not be fatal.

Various researchers have studied the number of bugs per 1608 lines of code
(e.g., Basilli and Perricone, 1984; and Ostrand and Weyuker, 2002). Bug density
depends on module size, module age, and more, but a ballpark figure for serious
industrial systems is ten bugs per thousand lines of code. This means that a mono-
lithic operating system of five million lines of code is likely to contain something
like 50,000 kernel bugs. Not all of these are fatal, of course, since some bugs may
be things like issuing an incorrect error message in a situation that rarely occurs.
Nevertheless, operating systems are sufficiently buggy that computer manufact-
urers put reset buttons on them (often on the front panel), something the manu-
facturers of TV sets, stereos, and cars do not do, despite the large amount of soft-
ware in these devices.

The basic idea behind the microkemel design is to achieve high reliability by
splitting the operating system up into small, well-defined modules, only one of
which—the microkernel—runs in kernel mode and the rest run as relatively pow-
erless ordinary user processes. In particular, by running each device driver and
file system as a separate user process, a bug in one of these can crash that com-
ponent, but cannot crash the entire system. Thus a bug in the audio driver will
cause the sound to be garbled or stop, but will not crash the computer. In contrast,
in a monolithic system with all the drivers in the kernel, a buggy audio driver can
casily reference an invalid memory address and bring the system to a grinding halt
instantly.

Many microkernels have been implemented and deployed (Accetta et al,
1986; Haertig et al.,, 1997; Heiser et al., 2006; Herder et al., 2006; Hildebrand,
1992; Kirsch et al, 2005; Liedtke, 1993, 1995, 1996; Pike et al, 1992; and Zuberi
et al,, 1999). They are especially common in real-time, industrial, avionics, and
military applications that are mission critical and have very high reliability re-
quirements. A few of the better-known microkernels are Integrity, K42, L4,
PikeOS, QNX, Symbian, and MINIX 3. We will now give a brief overview of
MINIX 3, which has taken the idea of modularity to the limit, breaking most of the
operating system up into a number of independent user-mode processes. MINIX 3
is a POSIX conformant, open-source system freely available at www.minix3.org
(Herder et al., 2006a; Herder et al., 2006b).

The MINIX 3 microkernel is only about 3200 lines of C and 800 lines of
assembler for very low-level functions such as catching interrupts and switching
processes. The C code manages and schedules processes, haidles interprocess
communication (by passing messages between processes), and offers a set of
about 35 kemel calls to allow the rest of the operating system to do its work.
These calls perform functions like hooking handlers to interrupts, moving data be-
tween address spaces, and installing new memory maps for newly created proc-
esses. The process structure of MINIX 3 is shown in Fig. 1-26, with the kernel call

66 INTRODUCTI®ON CHAP. 1

handlers labeled Sys. The device driver for the clock is also in the kernel because
the scheduler interacts closely with it. All the other device drivers run as separate
user processes.

7Process

3 /
. User progs.
:‘lso%re < @ / Servers

4

Omer Drivers
6 @ o)

AN

Microkemel handles interrupts, @ @
processes, scheduling, IPC

Figure 1-26. Structure of the MINIX 3 system.

Outside the kemel, the system is structured as three layers of processes all
running in user mode. The lowest layer contains the device drivers. Since they
run in user mode, they do not have physical access to the I/O port space and can-
not issue /O commands directly. Instead, to program an I/O device, the driver
builds a structure telling which values to write to which IO ports and makes a
kemel call telling the kernel to do the write. This approach means that the kernel
can check to see that the driver is writing (or reading) from I/0 it is authorized to
use. Consequently, (and unlike a monolithic design), a buggy audio driver cannot
accidentally write on the disk.

Above the driversis another user-mode layer containing the servers, which do
most of the work of the operating system. One or more file servers manage the
file system(s), the process manager creates, destroys, and manages processes, and
so on. User programs obtain operating system services by sending short messages
to the servers asking for the POSIX system calls. For example, a process needing
to do a read sends a message to one of the file servers telling it what to read.

One interesting server is the reincarnation server, whose job is to check if
the other servers and drivers are functioning correctly. In the event that a faulty
one is detected, it is automatically replaced without any user intervention. In this
way the system is self healing and can achieve high reliability.

The system has many restrictions limiting the power of each process. As
mentioned, drivers can only touch authorized I/O ports, but access to kemnel calls
is also controlled on a per process basis, as is the ability to send messages to other
processes. Processes can also grant limited permission for other processes to have
the kernel access their address spaces. As an example, a file system can grant

SEC. 14 O®PERATING SYSTEM STRUCTURE 67

permission for the disk driver to let the kernel put a newly read in disk block at a
specific address within the file system’s address space. The sum total of all these
restrictions is that each driver and server has exactly the power to do its work and
nothing more, thus greatly limiting the damage a buggy component can do.

An idea somewhat related to having a minimal kemel is to put the mechan-
ism for doing something in the kernel but not the policy. To make this point bet-
ter, consider the scheduling of processes. A relatively simple scheduling algo-
rithm is to assign a priority to every process and then have the kernel run the
highest-priority process that is runnable. The mechanism—in the kernel—is to
look for the highest-priority process and run it. The policy—assigning priorities
to processes—can be done by user-mode processes. In this way policy aind mech-
anism can be decoupled and the kemel can be made smaller.

1.7.4 Client-Server Model

A slight variation of the microkemel idea is to distinguish two classes of proc-
esses, the servers, each of which provides some service, and the clients, which
use these services. This model is known as the client-server model. Often the
lowest layer is a microkemel, but that is not required. The essence is the presence
of client processes and server processes.

Communication between clients and servers is often by message passing. To
obtain a service, a client process constructs a message saying what it wants and
sends it to the appropriate service. The service then does the work and sends back
the answer. If the client and server run on the same machine, certain optimiza-
tions are possible, but conceptually, we are talking about message passing here.

An obvious generalization of this idea is to have the clients and servers run on
different computers, connected by a local or wide-area network, as depicted in
Fig. 1-27. Since clients communicate with servers by sending messages, the cli-
ents need not know whether the messages are handled locally on their own ma-
chines, or whether they are sent across a network to servers on a remote machine.
As far as the client is concerned, the same thing happens in both cases: requests
are sent and replies come back. Thus the client-server model is an abstraction that
can be used for a single machine or for a network of machines.

Increasingly many systems involve users at their home PCs as clients and
large machines elsewhere running as servers. In fact, much of the Web operates
this way. A PC sends a request for a Web page to the server and the Web page
comes back. This is a typical use of the client-server model in a network.

1.7.S Virtual Machines

The initial releases of OS/360 were strictly batch systems. Nevertheless, many
360 users wanted to be able to work interactively at a terminal, so various groups,
both inside and outside IBM, decided to write timesharing systems for it. The

68 INTRODUCTI®N CHAP. 1

Machine 1 Machine 2 Machine 3 Machine 4
Client p) File server Process seiver Tenminal seirver
s Kernel Kemel Kemel Kernel ° .
\ Network

Message from
client to server

Figure 1-27. The client-server model over a network.

official IBM timesharing system, TSS/360, was delivered late, and when it finally
arrived it was so big and slow that few sites converted to it. It was eventually
abandoned after its development had consumed some $50 million (Graham,
1970). But a group at IBM’s Scientific Center in Cambridge, Massachusetts, pro-
duced a radically different system that IBM eventually accepted as a product. A
linear descendant of it, called z/VM, is now widely used on IBM’s current main-
frames, the zSeries, which are heavily used in large corporate data centers, for ex-
ample, as e-commerce servers that handle hundreds or thousands of transactions
per second and use databases whose sizes run to millions of gigabytes.

VYM/370

This system, originally called CP/CMS and later renamed VM/370 (Seawright
and MacKinnon, 1979), was based on an astute observation: a timesharing system
provides (1) multiprogramming and (2) an extended machine with a more con-
venient interface than the bare hardware. The essence of VM/370 is to completely
separate these two functions.

The heart of the system, known as the virtual machine monitor, runs on the
bare hardware and does the multiprogramming, providing not one, but several vir-
tual machines to the next layer up, as shown in Fig. 1-28. However, unlike all
other operating systems, these virtual machines are not extended machines, with
files and other nice features. Instead, they are exact copies of the bare hardware,
including kernel/user mode, 170, interrupts, and everything else the real machine
has.

Because each virtual machine is identical to the true hardware, each one can
run any operating system that will run directly on the bare hardware. Different
virtual machines can, and frequently do, run different operating systems. On the
original VM/370 system, some ran OS/360 or one of the other large batch or
transaction processing operating systems, while other ones ran a single-user,
interactive system called CMS (Conversational Monitor System) for interactive
timesharing users. The latter was popular with programmers.

SEC. 14 O®PERATING SYSTEM STRUCTURE 69

Virtual 370s
-1 System calls here
I/O instructions here —f>¢ CMS CMS CMS Y=} Trap here
Trap here —= VIM/370
370 Bare hardware

Figure 1-28. The structure of VM/37® with CMS.

When a CMS program executed a system call, the call was trapped to the op-
erating system in its own virtual machine, not to VM/370, just as it would if it
were running on a real machine instead of a virtual one. CMS then issued the nor-
mal hardware 170 instructions for reading its virtual disk or whatever was needed
to carry out the call. These I/O instructions were trapped by VM/370, which then
performed them as part of its simulation of the real hardware. By completely sep-
arating the functions of multiprogramming and providing an extended machine,
each of the pieces could be much simpler, more flexible, and much easier to main-
tain.

In its modern incarnation, ZZVM is usually used to run multiple complete op-
erating systems rather than stripped-down single-user systems like CMS. For ex-
ample, the zSeries is capable of running one or more Linux virtual machines
along with traditional IBM operating systems.

Virtual Machines Rediscovered

While IBM has had a virtual machine product available for four decades, and
a few other companies, including Sun Microsystems and Hewlett-Packard, have
recently added virtual machine support to their high-end enterprise servers, the
idea of virtualization has largely been ignored in the PC world until recently. But
in the past few years, a combination of new needs, new software, and new techno-
logies have combined to make it a hot topic.

First the needs. Many companies have traditionally run their mail servers,
Web servers, FTP servers, and other servers on separate computers, sometimes
with different operating systems. They see virtualization as a way to run them all
on the same machine without having a crash of one server bring down the rest.

Virtualization is also popular in the Web hosting world. Without it, Web host-
ing customers are forced to choose between shared hosting (which just gives
them a login account on a Web server, but no control over the server software)
and dedicated hosting (which gives them their own machine, which is very flexi-
ble but not cost effective for small to medium Websites). When a Web hosting

70 INTRODUCTI®ON CHAP. 1

company offers virtual machines for rent, a single physical machine can run many
virtual machines, each of which appears to be a complete machine. Customers
who rent a virtual machine can run whatever operating system and software they
want to, but at a fraction of the cost of a dedicated server (because the same phys-
ical machine supports many virtual machines at the same time).

Another use of virtualization is for end users who want to be able to run two
or more operating systems at the same time, say Windows and Linux, because
some of their favorite application packages run on one and some run on the other.
This situation is illustrated in Fig. 1-29(a), where the term “virtual machine moni-
tor” has been renamed type 1 hypervisor in recent years.

Guest OS process

Excel Word Mplayer Apollon O O O ;'r%scte(sjg
- owstos | |
Windows Type 2 hypervisor O O
Type 1 hypervisor Host operating system

(a) (b)

Figure 1-29. (a) A type | hypervisor. (b) A type 2 hypervisor.

Now the software. While no one disputes the attractiveness of virtual ma-
chines, the problem was implementation. In order to run virtual machine software
on a computer, its CPU must be virtualizable (Popek and Goldberg, 1974). In a
nutshell, here is the problem. When an operating system running on a virtual ma-
chine (in user mode) executes a privileged instruction), such as modifying the
PSW or doing I/O, it is essential that the hardware trap to the virtual machine
menitor so the instruction can be emulated in software. On some CPUs—notably
the Pentium, its predecessors, and its clones—attempts to execute privileged in-
structions in user mode are just ignored. This property made it impossible to have
virtual machines on this hardware, which explains the lack of interest in the PC
world. Of course, there were interpreters for the Pentium that ran on the Pentium,
but with a performance loss of typically 5-10x, they were not useful for serious
work.

This situation changed as a result of several academic research projects in the
1990s, notably Disco at Stanford (Bugnion et al.,, 1997), which led to commercial
products (e.g., VMware Workstation) and a revival of interest in virtual machines.
VMware Workstation is a type 2 hypervisor, which is shown in Fig. 1-29(b). In
contrast to type | hypervisors, which run on the bare metal, type 2 hypervisors run
as application programs on top of Windows, Linux, or some other operating sys-
tem, known as the host operating system. After a type 2 hypervisor is started, it

SEC. 1.7 OPERATING SYSTEM STRUCTURE 71

reads the installation CD-ROM for the chosen guest operating system and
installs on a virtual disk, which is just a big file in the host operating system’s file
system.

When the guest operating system is booted, it does the same thing it does on
the actual hardware, typically starting up some background processes and then a
GUI. Some hypervisors translate the binary programs of the guest operating sys-
tem block by block, replacing certain control instructions with hypervisor calls.
The translated blocks are then executed and cached for subsequent use.

A different approach to handling control instructions is to modify the operat-
ing system to remove them. This approach is not true virtualization, but paravir-
tualization. We will discuss virtualization in more detail in Chap. 8.

The Java Virtual Machine

Another area where virtual machines are used, but in a somewhat different
way, is for running Java programs. When Sun Microsystems invented the Java
programming language, it also invented a virtual machine (i.e., a computer archi-
tecture) called the JVM (Java Virtual Machine). The Java compiler produces
code for JVM, which then typically is executed by a software JVM interpreter.
The advantage of this approach is that the JVM code can be shipped over the In-
ternet to any computer that has a JVM interpreter and run there. If the compiler
had produced SPARC or Pentium binary programs, for example, they could not
have been shipped and run annywhere as easily. (Of course, Sun could have pro-
duced a compiler that produced SPARC binaries and then distributed a SPARC
interpreter, but JVM is a much simpler architecture to interpret.) Another advan-
tage of using JVM is that if the interpreter is implemented properly, which is not
completely trivial, incoming JVM programs can be checked for safety and then
executed in a protected environment so they cannot steal data or do any damage.

1.7.6 Exokernels

Rather than cloning the actual machine, as is done with virtual machines, an-
other strategy is partitioning it, in other words, giving each user a subset of the re-
sources. Thus one virtual machine might get disk blocks 0 to 1023, the next one
might get blocks 1024 to 2047, and so on.

At the bottom layer, running in kernel mode, is a program called the exoker-
nel (Engler et al,, 1995). Its job is to allocate resources to virtual machines and
then check attempts to use them to make sure no machine is trying to use some-
body else’s resources. Each user-level virtual machine can run its own operating
system, as on VM/370 and the Pentium virtual 8086s, except that each one is res-
tricted to using only the resources it has asked for and been allocated.

The advantage of the exokemel scheme is that it saves a layer of mapping. In
the other designs, each virtual machine thinks it has its own disk, with blocks

72 INTRODUCTION CHAP. 1

running from O to some maximum, so the virtual machine monitor must maintain
tables to remap disk addresses (and all other resources). With the exokernel, this
remapping is not needed. The exokernel need only keep track of which virtual ma-
chine has been assigned which resource. This method still has the advantage of
separating the multiprogramming (in the exokernel) from the user operating sys-
tem code (in user space), but with less overhead, since all the exokemel has to do
1s keep the virtual machines out of each other’s hair.

1.8 THE WORLD ACCORDING TO C

Operating systems are normally large C (or sometimes C++) programs con-
sisting of many pieces written by many programmers. The environment used for
developing operating systems is very different from what individuals (such as stu-
dents) are used to when writing small Java programs. This section is an attempt to
give a very brief introduction to the world of writing an operating system for
small-time Java programmers.

1.8.1 The C Language

This is not a guide to C, but a short summary of some of the key differences
between C and Java. Java is based on C, so there are many similarities between
the two. Both are imperative languages with data types, variables, and control
statements, for example. The primitive data types in C are integers (including
short and long ones), characters, and floating-point numbers. Composite data
types can be constructed using arrays, structures, and unions. The control state-
ments in C are similar to those in Java, including if, switch, for, and while state-
ments. Functions and parameters are roughly the same in both languages.

One feature that C has that Java does not is explicit pointers. A pointer is a
variable that points to (i.e., contains the address of) a variable or data structure.
Consider the statements

charci, c2, *p;

G =M
p=é&ct;
c2 = *p;

which declare ¢/ and ¢2 to be character variables and p to be a variable that points
to (i.e., contains the address of) a character. The first assignment stores the ASCII
code for the character ’c’ in the variable ¢/. The second one assigns the address
of ¢l to the pointer variable p. The third one assigns the contents of the variable
pointed to by p to the variable c¢2, so after these statements are executed, ¢2 also
contains the ASCII code for *c’. In theory, pointers are typed, so you are not sup-
posed to assign the address of a floating-point number to a character pointer, but

SEC. 1.8 THE WORLD ACCORDING TO C 73

in practice compilers accept such assignments, albeit sometimes with a warning.
Pointers are a very powerful construct, but also a great source of errors when used
carelessly.

Some things that C does not have include built-in strings, threads, packages,
classes, objects, type safety, and garbage collection. The last one is a show stop-
per for operating systems. All storage in C is either static or explicitly allocated
and released by the programmer, usually with the library function malloc and free.
It is the latter property—total programmer control over memory—along with
explicit pointers that makes C attractive for writing operating systems. Operating
systems are basically real-time systems to some extent, even general purpose
ones. When an interrupt occurs, the operating system may have only a few
microseconds to perform some action or lose critical information. Having the gar-
bage collector kick in at an arbitrary moment is intolerable.

1.8.2 Header Files

An operating system project generally consists of some number of directories,
each containing many .c files containing the code for some part of the system,
along with some .4 header files that contain declarations and definitions used by
one or more code files. Header files can also include simple macros, such as

#define BUFFER_SIZE 4096

which allows the programmer to name constants, so that when BUFFER_SIZE is
used in the code, it is replaced during compilation by the number 4096. Good C
programming practice is to name every constant except 0, 1, and —1, and some-
times even them. Macros can have parameters, such as

#define max(a,b) (a>b ?a:b)
which allows the programmer to write
i = max(j, k+1)
and get
i=(j>k+1 ?j:k+1)

to store the larger of j and k+1/ in i. Headers can also contain conditional compi-
lation, for example

#ifdef PENTIUM
intel_int_ack();
#endif

which compiles into a call to the function intel_int_ack if the macro PENTIUM is
defined and nothing otherwise. Conditional compilation is heavily used to isolate

74 INTRODUCTION CHAP. |

architecture-dependent code so that certain code is inserted only when the system
is compiled on the Pentium, other code is inserted only when the system is com-
piled on a SPARC, and so on. A .c file can bodily include zero or more header
files using the #include directive. There are also many header files that are com-
mon to nearly every .c and are stored in a central directory.

1.8.3 Large Programming Pro jects

To build the operating system, each .c is compiled into an object file by the C
compiler. Object files, which have the suffix .0, contain binary instructions for the
target machine. They will later be directly executed by the CPU. There is nothing
like Java byte code in the C world.

The first pass of the C compiler is called the C preprocessor. As it reads
each .c file, every time it hits a #include directive, it goes and gets the header file
named in it and processes it, expanding macros, handling conditional compilation
(and certain other things) and passing the results to the next pass of the compiler
as if they were physically included.

Since operating systems are very large (five million lines of code is not un-
usual), having to recompile the entire thing every time one file is changed would
be unbearable. On the other hand, changing a key header file that is included in
thousands of other files does require recompiling those files. Keeping track of
which object files depend on which header files is completely unmanageable
without help.

Fortunately, computers are very good at precisely this sort of thing. On UNIX
systems, there is a program called make (with numerous variants such as gmake,
pmake, etc.) that reads the Makefile, which tells it which files are dependent on
which other files. What make does is see which object files are needed to build the
operating system binary needed right now and for each one, check to see if any of
the files it depends on (the code and headers) have been modified subsequent to
the last time the object file was created. If so, that object file has to be recom-
piled. When make has determined which .c files have to recompiled, it invokes
the C compiler to recompile them, thus reducing the number of compilations to
the bare minimum. In large projects, creating the Makefile is error prone, so there
are tools that do it automatically.

Once all the .o files are ready, they are passed to a program called the linker
to combine all of them into a single executable binary file. Any library functions
called are also included at this point, interfunction references are resolved, and
machine address are relocated as need be. When the linker is finished, the result is
an executable program, traditionally called a.out on UNIX systems. The various
components of this process are illustrated in Fig. 1-30 for a program with three C
files and two header files. Although we have been discussing operating system
development here, all of this applies to developing any large program.

SEC. 1.8 THE WORLD ACCORDING TO C 78

@ mac.h help.c @

Ad

C
preprocesor

compiler

\
main.o other.o
\
linker

y Executable

@ binary program

Figure 1-30. The process of compiling C and header files to make an executable.

1.8.4 The Model of Run Time

Once the operating system binary has been linked, the computer can be
rebooted and the new operating system started. Once running, it may dynamically
load pieces that were not statically included in the binary such as device drivers
and file systems. At run time the operating system may consist of multiple seg-
ments, for the text (the program code), the data, and the stack. The text segment is
normally immutable, not changing during execution. The data segment starts out
at a certain size and initialized with certain values, but it can change and grow as
need be. The stack is initially empty but grows and shrinks as functions are called
and returned from. Often the text segment is placed near the bottom of memory,
the data segment just above it, with the ability to grow upward, and the stack seg-
ment at a high virtual address, with the ability to grow downward, but different
systems work differently.

In all cases, the operating system code is directly executed by the hardware,
with no interpreter and no just-in-time compilation, as is normal with Java.

76 INTRODUCTION CHAP. 1

1.9 RESEARCH ON OPERATING SYSTEMS

Computer science is a rapidly advancing ficld and it is hard to predict where it
is going. Researchers at universities and industrial research labs are constantly
thinking up new ideas, some of which go nowhere but some of which become the
comnerstone of future products and have massive impact on the industry and users.
Telling which is which turns out to be easier to do in hindsight than in real time.
Separating the wheat from the chaff is especially difficult because it often takes
20 to 30 years from idea to impact.

For example, when President Eisenhower set up the Dept. of Defense’s Ad-
vanced Research Projects Agency (ARPA) in 1958, he was trying to keep the
Army from killing the Navy and the Air Force over the Pentagon’s research bud-
get. He was not trying to invent the Intermet. But one of the things ARPA did
was fund some university research on the then-obscure concept of packet switch-
ing, which led to the first experimental packet-switched network, the ARPANET.
It went live in 1969. Before long, other ARPA-funded research networks were
connected to the ARPANET, and the Internet was born. The Internet was then
happily used by academic researchers for sending e-mail to each other for 20
years. In the early 1990s, Tim Bemers-Lee invented the World Wide Web at the
CERN research lab in Geneva and Marc Andreesen wrote a graphical browser for
it at the University of Illinois. All of a sudden the Intermet was full of chatting
teenagers. President Eisenhower is probably rolling over in his grave.

Research in operating systems has also led to dramatic changes in practical
systems. As we discussed earlier, the first commercial computer systems were all
batch systems, until M.L.T. invented interactive timesharing in the early 196@s.
Computers were all text-based until Doug Engelbart invented the mouse and the
graphical user interface at Stanford Research Institute in the late 1960s. Who
knows what will come next?

In this section and in comparable sections throughout the book, we will take a
brief look at some of the research in operating systems that has taken place during
the past 5 to 10 years, just to give a flavor of what might be on the horizon. This
introduction is certainly not comprehensive and is based largely on papers that
have been published in the top research journals and conferences because these
ideas have at least survived a rigorous peer review process in order to get pub-
lished. Most of the papers cited in the research sections were published by either
ACM, the IEEE Computer Society, or USENIX and are available over the Inter-
net to (student) members of these organizations. For more information about these
organizations and their digital libraries, see

ACM http://www.acm.org
IEEE Computer Society http://www.computer.org
USENIX http://www.usenix.org

SEC. 1.9 RESEARCH ON OPERATING SYSTEMS 77

Virtually all operating systems researchers realize that current operating sys-
tems are massive, inflexible, unreliable, insecure, and loaded with bugs, certain
ones more than others (names withheld here to protect the guilty). Consequently,
there is a lot of research on how to build better operating systems. Work has
recently been published about new operating systems (Krieger et al,, 2006), oper-
ating system structure (Fassino et al, 2002), operating system correctness
(Elphinstone et al., 2007; Kumar and Li, 2002; and Yang et al., 2006), operating
system reliability (Swift et al., 2006; and LeVasseur et al., 2004), virtual ma-
chines (Barham et al., 2003; Garfinkel et al, 2003; King et al., 2003; and Whi-
taker et al., 2002), viruses and worms (Cesta et al., 2005; Portokalidis et al., 2006;
Tucek et al.,, 2007, and Vrable et al., 2005), bugs and debugging (Chou et al.,
2001; and King et al,, 2005), hyperthreading and multithreading (Fedorova, 2005;
and Bulpin and Pratt, 2005), and user behavior (Yu et al., 2006), among many
other topics.

1.10 OUTLINE OF THE REST OF THIS BOOK

We have now completed our introduction and bird’s-eye view ofthe operating
system. It is time to get down to the details. As mentioned already, from the pro-
grammer’s point of view, the primary purpose of an operating system is to provide
some key abstractions, the most important of which are processes and threads, ad-
dress spaces, and files. Accordingly the next three chapters are devoted to these
critical topics.

Chapter 2 is about processes and threads. It discusses their properties and
how they communicate with one another. It also gives a number of detailed ex-
amples of how interprocess communication works and how to avoid some of the
pitfalls.

In Chap. 3 we will study address spaces and their adjunct, memory man-
agement, in detail. The important topic of virtual memory will be examined, along
with closely related concepts such as paging and segmentation.

Then, in Chap. 4, we come to the all-important topic of file systems. Te a
considerable extent, what the user sees is largely the file system. We will look at
both the file system interface and the file system implementation.

Input/Output is covered in Chap. 5. The concepts of device independence and
device dependence will be looked at. Several important devices, including disks,
keyboards, and displays, will be used as examples.

Chapter 6 is about deadlocks. We briefly showed what deadlocks are in this
chapter, but there is much more to say. Ways to prevent or avoid them are dis-
cussed.

At this point we will have completed our study of the basic principles of sin-
gle-CPU operating systems. However, there is more to say, especially about ad-
vanced topics. In Chap. 7, we examine multimedia systems, which have a number

78 INTRODUCTION CHAP. |

of properties and requirements that differ from conventional operating systems.
Among other items, scheduling and the file system are affected by the nature of
multimedia. Another advanced topic is multiple processor systems, including mul-
tiprocessors, parallel computers, and distributed systems. These subjects are
covered in Chap. 8.

A hugely important subject is operating system security, which is covered in
Chap 9. Among the topics discussed in this chapter are threats (e.g., viruses and
worms), protection mechanisms, and security models.

Next we have some case studies of real operating systems. These are Linux
(Chap. 10), Windows Vista (Chap. 11), and Symbian (Chap. 12). The book con-
cludes with some wisdom and thoughts about operating system design in Chap.
13.

1.11 METRIC UNITS

To avoid any confusion, it is worth stating explicitly that in this book, as in
computer science in general, metric units are used instead of traditional English
units (the furlong-stone-fortnight system). The principal metric prefixes are listed
in Fig. 1-31. The prefixes are typically abbreviated by their first letters, with the
units greater than | capitalized. Thus a I-TB database occupies 10'? bytes of stor-
age and a 100 psec (or 100 ps) clock ticks every 10710 seconds. Since milli and
micro both begin with the letter “m,” a choice had to be made. Normally, “m” is
for milli and “p”” (the Greek letter mu) is for micro.

Exp. Explicit Prefix | Exp. Explicit Prefix
10~* | 0.001 milli 10° 1,000 | Kilo
10°® | 0.000001 micro | 10° 1,000,000 | Mega
10® | 0.000000001 nano | 10° 1,000,000,000 | Giga
10-? | 0.000000000001 pico 10" 1,000,000,000,000 | Tera
10~'®* | 0.000000000000001 femto | 10" 1,000,000,000,000,000 | Peta
10~'® | 0.0000000000000000001 atto 10'® 1,000,000,000,000,000,000 | Exa
10~2' | 0.0000000000000000000001 zepto | 107 1,000,000,000,000,000,000,000 | Zetta
10~2* | 0.0000000000000000000000001 | yocto | 10%* | 1,000,000,000,000,000,000,000,000 | Yotta

Figure 1-31. The principal metric prefixes.

It is also worth pointing out that for measuring memory sizes, in common
industry practice, the units have slightly different meanings. There Kilo means 2'°
(1024) rather than 103 (1000) because memories are always a power of two. Thus
a 1-KB memory contains 1024 bytes, not 1000 bytes. Similarly, a I-MB memory
contains 2% (1,048,576) bytes and a 1-GB memory contains gy (1,073,741,824)
bytes. However, a 1-Kbps communication line transmits 1000 bits per second and
a 10-Mbps LAN runs at 10,000,000 bits/sec because these specds are not powers

SEC. 1.11 METRIC UNITS 79

of two. Unfortunately, many people tend to mix up these two systems, especially
for disk sizes. To avoid ambiguity, in this book, we will use the symbols KB,
MB, and GB for 2!°, 22° and 2°° bytes respectively, and the symbols Kbps,
Mbps, and Gbps for 10, 10° and 10° bits/sec, respectively.

1.12 SUMMARY

Operating systems can be viewed from two viewpoints: resource managers
and extended machines. Inthe resource manager view, the operating system’s job
is to manage the different parts of the system efficiently. In the extended machine
view, the job of the system is to provide the users with abstractions that are more
convenient to use than the actual machine. These include processes, address
spaces, and files.

Operating systems have a long history, starting from the days when they
replaced the operator, to modern multiprogramming systems. Highlights include
early batch systems, multiprogramming systems, and personal computer systems.

Since operating systems interact closely with the hardware, some knowledge
of computer hardware is useful to understanding them. Computers are built up of
processors, memories, and I/0 devices. These parts are connected by buses.

The basic concepts on which all operating systems are built are processes,
memory management, [/O management, the file system, and security. Each of
these will be treated in a subsequent chapter.

The heart of any operating system is the set of system calls that it can handle.
These tell what the operating system really does. For UNIX, we have looked at
four groups of system calls. The first group of system calls relates to process crea-
tion and termination. The second group is for reading and writing files. The third
group is for directory management. The fourth group contains miscellaneous
calls.

Operating systems can be structured in several ways. The most common ones
are as a monolithic system, a hierarchy of layers, microkernel, client-server, virtu-
al machine, or exokernel.

PRO@BLEMS

1. What is multiprogramming?

2. What is spooling? Do you think that advanced personal computers will have spooling
as a standard feature in the future?

3. @n early computers, every byte of data read or written was handled by the CPU (i.e.,
there was no DMA). What implications does this have for multiprogramming?

80

1e.

11.

12.

13.

INTRODUCTI®ON CHAP. 1

. The family of computers idea was introduced in the 196@s with the IBM System/360

mainframes. Is this idea now dead as a doornai’l or does it live on?

. ®ne reason GUIs were initially slow to be adopted was the cost of the hardware need-

ed to support them. How much video RAM is needed to support a 25 line x 3@ row
character monochrome text screen? How much for a 1024 X 768 pixel 24-bit color
bitmap? What was the cost of this RAM at 1980 prices ($5/KB)? How much is it
now?

There are several design goals in building an operating system, for example, resource
utilization, timeliness, robustness, and so on. Give an example of two design goals that
may contradict one another.

Which of the following instructions should be allowed only in kernel mode?

(a) Disable all interrupts.

(b) Read the time-of-day clock.
(c) Set the time-of-day clock.
(d) Change the memory map.

Consider a system that has two CPUs and each CPU has two threads (hyperthreading).
Suppose three programs, P@®, P/, and P2, are started with run times of 5, 10 and 20
mses, respectively. How long will it take to complete the execution of these programs?
Assume that all three programs are 100% CPU bound, do not block during execution,
and do not change CPUs once assigned.

A computer has a pipeline with four stages. Each stage takes the same time to do its
work, namely, 1 nsec. How many instructions per second can this machine execute?

Consider a computer system that has cache memory, main memory (RAM) and disk,
and the operating system uses virtual memory. It takes 2 nsec to access a word from
the cache, 10 nsec to access a word from the RAM, and 1@ ms to access a word from
the disk. If the cache hit rate is 95% and main memory hit rate (after a cache miss) is
99%, what is the average time to access a word?

An alert reviewer notices a consistent spelling error in the manuscript of an operating
systems textbook that is about to go to press. The book has approximately 700 pages,
each with 50 lines of 80 characters each. How long will it take to electronically scan
the text for the case of the master copy being in each of the levels of memory of
Fig. 1-97 For internal storage methods, consider that the access time given is per char-
acter, for disk devices assume the time is per block of 1024 characters, and for tape
assume the time given is to the start of the data with subsequent access at the same
speed as disk access.

When a user program makes a system call to read or write a disk file, it provides an
indication of which file it wants, a pointer to the data buffer, and the count. Control is
then transferred to the operating system, which calls the appropriate driver. Suppose
that the driver starts the disk and terminates until an interrupt occurs. In the case of
reading from the disk, obviously the caller will have to be blocked (because there are
no data for it). What about the case of writing to the disk? Need the caller be block-
ing awaiting completion of the disk transfer?

What is a trap instruction? Explain its use in operating systems.

CHAP. 1 PROBLEMS 81

14.
15.

16.

17.
18.

19.

20.

21.

22;

23.

24.

23,

26.

27

What is the key difference between atrap and an interrupt?

Why is the process table needed in a timesharing system? Is it also needed in personal
computer systems in which only one process exists, that process taking over the entire
machine unti] it is finished?

Is there any reason why you might want to mount a file system on a nonempty direc-
tory? If so. what is it?

What is the purpose of a system call in an operating system?

For each of the following system calls, give a condition that causes it to fail: fork,
exec, and unlink.

Can the
count = write(fd, buffer, nbytes);
call return any value in count other than nbytes? If so, why?

A file whose file descriptor is fd contains the following sequence of bytes: 3, 1, 4, 1, 5,
9,2,6,5,3,5. The following system calls are made:

Iseek(fd, 3, SEEK_SET);
read(fd, &buffer, 4);

where the |seek call makes a seek to byte 3 of the file. What does buiffer contain after
the read has completed?

Suppose that a 10-MB file is stored on a disk on the same track (track # 50) in con-
secutive sectors. The disk arm is currently situated over track number 100. How long
will it take to retrieve this file from the disk? Assume that moving the arm from one
cylinder to the next takes about 1 ms and it takes about 5 ms for the sector where the
beginning of the file is stored to rotate under the head. Also, assume that reading oc-
curs at arate of 100 MB/s.

What 1s the essential difference between a block special file and a character special
file?

In the example given in Fig. 1-17, the library procedure is called read and the system
call itself is called read. Is it essential that both of these have the same name? If not,
which one is more important?

The client-server model is popular in distributed systems. Can it also be used in a sin-
gle-computer system?

To a pregrammer, a system call looks like any other call to a library procedure. Is it
important that a programmer know which library procedures result in system calls?
Under what circumstances and why?

Figure 1-23 shows that a number of UNIX system calls have no Win32 API equiva-
lents. For each of the calls listed as having no Win32 equivalent, what are the conse-
quences for a programmer of converting a UNIX program to run under Windows?

A portable operating system is one that can be ported from one system architecture to
another without any modification. Explain why it is infeasible to build an operating

82

28.

29.

36.

31.

524

INTRODUCTI®ON CHAP. 1

system that is completely portable. Describe two high-level layers that you will have
in designing an operating system that is highly portable.

Explain how separation of policy and mechanism aids in building microkemel-based
operating systems.

Here are some questions for practicing unit conversions:

(a) How long is a microyear in seconds?

(b) Micrometers are often called microns. How long is a gigamicron?
(c) How many bytes are there in a 1-TB memory?

(d) The mass of the earth is 6008 yottagrams. What is that in kilograms?

Write a shell that is similar to Fig. 1-19 but contains enough code that it actually
works so you can test it. You might also add some features such as redirection of input
and output, pipes, and background jobs.

If you have a personal UNIX-like system (Linux, MINIX, Free BSD, etc.) available
that you can safely crash and reboot, write a shell script that attempts to create an
unlimited number of child processes and observe what happens. Before running the
experiment, type sync to the shell to flush the file system buffers to disk to avoid ruin-
ing the file system. Note: Do not try this on a shared system without first getting per-
mission from the system administrator. The consequences will be instantly obvious so
you are likely to be caught and sanctions may follow.

Examine and try to interpret the contents of a UNIX-like or Windows directory with a
tool like the UNIX od program or the MS-DOS DEBUG program. Hint: How you do
this will depend upon what the @S allows. ®ne trick that may work is to create a di-
rectory on a floppy disk with one operating system and then read the raw disk data
using a different eperating system that allows such access.

PROCESSES AND THREADS

We are now about to embark on a detailed study of how operating systems are
designed and constructed. The most central concept in any operating system is the
process: an abstraction of a running program. Everything else hinges on this con-
cept, and it is important that the operating system designer (and student) have a
thorough understanding of what a process is as early as possible.

Processes are one of the oldest and most important abstractions that operating
systems provide. They support the ability to have (pseudo) concurrent operation
even when there is only one CPU available. They turn a single CPU into multiple
virtual CPUs. Without the process abstraction, modern computing could not exist.
In this chapter we will go into considerable detail about processes and their first
cousins, threads.

2.1 PROCESSES

All modern computers often do several things at the same time. People used
to working with personal computers may not be fully aware of this fact, so a few
examples may make the point clearer. First consider a Web server. Requests
come in from all over asking for Web pages. When a request comes in, the server
checks to see if the page needed is in the cache. If it is, it is sent back; if it is not,
a disk request is started to fetch it. However, from the CPU’s perspective, disk re-
quests take eternity. While waiting for the disk request to complete, many more

83

84 PROCESSES AND THREADS CHAP. 2

requests may come in. If there are multiple disks present, some or all of them
may be fired off to other disks long before the first request is satisfied. Clearly
some way is needed to model and control this concurrency. Processes (and espe-
cially threads) can help here.

Now consider a user PC. When the system is booted, many processes are
secretly started, often unknown to the user. For example, a process may be started
up to wait for incoming e-mail. Another process may run on behalf of the anti-
virus program to check periodically if any new virus definitions are available. In
addition, explicit user processes may be running, printing files and buming a CD-
ROM, all while the user is surfing the Web. All this activity has to be managed,
and a multiprogramming system supporting multiple processes comes in very
handy here.

In any multiprogramming system, the CPU switches from process to process
quickly, running each for tens or hundreds of milliseconds. While, strictly speak-
ing, at any instant of time, the CPU is running only one process, in the course of |
second, it may work on several of them, giving the illusion of parallelism. Some-
times people speak of pseudoparallelism in this context, to contrast it with the
true hardware parallelism of multiprocessor systems (which have two or more
CPUs sharing the same physical memory). Keeping track of multiple, parallel
activities is hard for people to do. Therefore, operating system designers over the
years have evolved a conceptual model (sequential processes) that makes paral-
lelism easier to deal with. That model, its uses, and some of its consequences form
the subject of this chapter.

2.1.1 The Process Model

In this model, all the runnable software on the computer, sometimes including
the operating system, is organized into a number of sequential processes, or just
processes for short. A process is just an instance of an executing program, in-
cluding the current values of the program counter, registers, and variables. Cen-
ceptually, each process has its own virtual CPU. In reality, of course, the real
CPU switches back and forth from process to process, but to understand the sys-
tem, it is much easier to think about a collection of processes running in (pseudo)
parallel than to try to keep track of how the CPU switches from program to pro-
gram. This rapid switching back and forth is called multiprogramming, as we
saw in Chap. 1.

In Fig. 2-1(a) we see a computer multiprogramming four programs in memo-
ry. In Fig. 2-1(b) we see four processes, each with its own flow of control (i.e., its
own logical program counter), and each one running independently of the other
ones. Of course, there is only one physical program counter, so when each proc-
ess runs, its logical program counter is loaded into the real program counter.
When it is finished (for the time being), the physical program counter is saved in
the process’ stored logical program counter in memory. In Fig. 2-1(c) we see that

SEC. 2.1 PROCESSES 85

viewed over a long enough time interval, all the processes have made progress,
but at any given instant only one process is actually running.

One program counter

F \
N 7 Process our program counlers
E switch o D . -
B [72]
Y dc] = =
o
1 c A ¢ BY c l DY B o= —
4 i === —
_W’ 5 Time —=
(@) (b) ()

Figure 2-1. (a) Multiprogramming of four programs. (b) Conceptual model of
four independent, sequential processes. (c) Only one program is active at once.

In this chapter, we will assume there is only one CPU. Increasingly, however,
that assumption is not true, since new chips are often multicore, with two, four, or
more CPUs. We will look at multicore chips and multiprocessors in general in
Chap. 8, but for the time being, it is simpler just to think of one CPU at a time. So
when we say that a CPU can really only run one process at a time, if there are two
cores (or CPUs) each one of them can run only one process at a time.

With the CPU switching rapidly back and forth among the processes, the rate
at which a process performs its computation will not be uniform and probably not
even reproducible if the same processes are run again. Thus, processes must not
be programmed with built-in assumptions about timing. Consider, for example,
an /O process that starts a streamer tape to restore backed-up files, executes an
idle loop 10,000 times to let it get up to speed, and then issues a command to read
the first record. If the CPU decides to switch to another process during the idle
loop, the tape process might not run agarn until after the first record was already
past the read head. When a process has critical real-time requirements like this,
that is, particular events must occur within a specified number of milliseconds,
special measures must be taken to ensure that they do occur. Normally, however,
most processes are not affected by the underlying multiprogramming of the CPU
or the relative speeds of different processes.

The difference between a process and a program is subtle, but crucial. An
analogy may help here. Consider a culinary-minded computer scientist who is
baking a birthday cake for his daughter. He has a birthday cake recipe and a
kitchen well stocked with all the input: flour, eggs, sugar, extract of vanilla, and
so en. In this analogy, the recipe is the program (i.e., an algorithm expressed in
some suitable notation), the computer scientist is the processor (CPU), and the
cake ingredients are the input data. The process is the activity consisting of our
baker reading the recipe, fetching the ingredients, and baking the cake.

86 PROCESSES AND THREADS CHAP. 2

Now imagine that the computer scientist’s son comes running in screaming
his head off, saying that he has been stung by a bee. The computer scientist re-
cords where he was in the recipe (the state of the current process is saved), gets
out a first aid book, and begins following the directions in it. Here we see the
processor being switched from one process (baking) to a higher-priority process
(administering medical care), each having a different program (recipe versus first
aid book). When the bee sting has been taken care of, the computer scientist goes
back to his cake, continuing at the point where he left off.

The key idea here is that a process is an activity of some kind. It has a pro-
gram, input, output, and a state. A single processor may be shared among several
processes, with some scheduling algorithm being used to determine when to stop
work on one process and service a different one.

It is worth noting that if a program is running twice, it counts as two proc-
esses. For example, it is often possible to start a word processor twice or print two
files at the same time if two printers are available. The fact that two running proc-
esses happen to be running the same program does not matter; they are distinct
processes. The operating system may be able to share the code between them so
only one copy is in memory, but that is a technical detail that does not change the
conceptual situation of two processes running.

2.1.2 Process Creation

Operating systems need some way to create processes. In very simple sys-
tems, or in systems designed for running only a single application (e.g., the con-
troller in a microwave oven), it may be possible to have all the processes that will
ever be needed be present when the system comes up. In general-purpose sys-
tems, however, some way is necded to create and terminate processes as needed
during operation. We will now look at some ofthe issues.

There are four principal events that cause processes to be created:

1. System initialization.

2. Execution of a process creation system call by a running process.
3. A user request to create a new process.
4

Initiation of a batch job.

When an operating system is booted, typically several processes are created.
Some of these are foreground processes, that is, processes that interact with
(human) users and perform work for them. Others are background processes,
which are not associated with particular users, but instead have some specific
function. For example, one background process may be designed to accept incom-
ing e-mail, sleeping most of the day but suddenly springing to life when incoming

SEC. 2.1 PROCESSES 87

e-mail arrives. Another background process may be designed to accept incoming
requests for Web pages hosted on that machine, waking up when a request arrives
to service the request. Processes that stay in the backgreund to handle some
activity such as e-mail, Web pages, news, printing, and so on are called daemons.
Large systems commonly have dozens of them. In UNIX, the ps program can be
used to list the running processes. In Windows, the task manager can be used.

In addition to the processes created at boot time, new precesses can be created
afterward as well. Often a running process will issue system calls to create one or
more new processes to help it do its job. Creating new precesses is particularly
useful when the work to be done can easily be formulated in terms of several re-
lated, but otherwise independent interacting processes. For example, if a large
amount of data is being fetched over a network for subsequent processing, it may
be convenient to create one process to fetch the data and put them in a shared buf-
fer while a second precess removes the data items and processes them. On a mul-
tiprocessor, allowing each process to run on a different CPU may also make the
job go faster.

In interactive systems, users can start a program by typing a command or
(double) clicking an icon. Taking either of these actions starts a new process and
runs the selected program in it. In command-based UNIX systems running X, the
new process takes over the window in which it was started. In Microsoft Win-
dows, when a process is started it does not have a window, but it can create one
(or more) and most do. In both systems, users may have multiple windows open
at once, cach running some process. Using the mouse, the user can select a win-
dow and interact with the process, for example, providing input when needed.

The last situation in which processes are created applies only to the batch sys-
tems found on large mainframes. Here users can submit batch jobs to the system
(possibly remotely). When the operating system decides that it has the resources
to run another job, it creates a new process and runs the next job from the input
queue in it.

Technically, in all these cases, a new process is created by having an existing
process execute a process creation system call. That process may be a running
user process, a system process invoked from the keyboard or mouse, or a batch
manager process. What that process does is execute a system call to create the
new process. This system call tells the operating system to create a new process
and indicates, directly or indirectly, which program to run in it.

In UNIX, there is only one system call to create a new process: fork. This call
creates an exact clone of the calling process. After the fork, the two processes, the
parent and the child, have the same memory image, the same environment stings,
and the same open files. That is all there is. Usually, the child process then exe-
cutes execve or a similar system call to change its memory image and run a new
program. For example, when a user types a command, say, sort, to the shell, the
shell forks off a child process and the child executes sort. The reason for this
two-step process is to allow the child to manipulate its file descriptors after the

88 PROCESSES AND THREADS CHAP. 2

fork but before the execve in order to accomplish redirection of standard input,
standard output, and standard error.

In Windows, in contrast, a single Win32 function call, CreateProcess, hand-
les both process creation and loading the correct program into the new process.
This call has 10 parameters, which include the program to be executed, the com-
mand-line parameters to feed that program, various security attributes, bits that
control whether open files are inherited, priority information, a specification of
the window to be created for the process (if any), and a pointer to a structure in
which information about the newly created process is returned to the caller. In ad-
dition to CreateProcess, Win32 has about 100 other functions for managing and
synchronizing processes and related topics.

In both UNIX and Windows, after a process is created, the parent and child
have their own distinct address spaces. If either process changes a word in its ad-
dress space, the change is not visible to the other process. In UNIX, the child’s in-
itial address space is a copy of the parent’s, but there are definitely two distinct
address spaces involved; no writable memory is shared (some UNIX imple-
mentations share the program text between the two since that cannot be modified).
It is, however, possible for a newly created process to share some of its creator’s
other resources, such as open files. In Windows, the parent’s and child’s address
spaces are different from the start.

2.1.3 Process Termination

After a process has been created, it starts running and does whatever its job is.
However, nothing lasts forever, not even processes. Sooner or later the new proc-
ess will terminate, usually due to one of the following conditions:

1. Normal exit (voluntary).
2. Error exit (voluntary).

3. Fatal error (involuntary).
4

Killed by another process (involuntary).

Most processes terminate because they have done their work. When a compi-
ler has compiled the program given to it, the compiler executes a system call to
tell the operating system that it is finished. This call is exit in UNIX and ExitProc-
ess in Windows. Screen-oriented programs also support voluntary termination.
Word processors, Internet browsers and similar programs always have an icon or
menu item that the user can click to tell the process to remove any temporary files
it has open and then terminate.

The second reason for termination is that the process discovers a fatal error.
For example, if a user types the command

cc foo.c

SEC. 2.1 PROCESSES 89

to compile the program foo.c and no such file exists, the compiler simply exits.
Screen-oriented interactive processes generally do not exit when given bad pa-
rameters. Instead they pop up a dialog box and ask the user to try again.

The third reason for termination is an error caused by the process, often due to
a program bug. Examples include executing an illegal instruction, referencing
nonexistent memory, or dividing by zero. In some systems (e.g2., UNIX), a process
can tell the operating system that it wishes to handle certain errors itself, in which
case the process is signaled (interrupted) instead of terminated when one of the er-
rors occurs.

The fourth reason a process might terminate is that the process executes a sys-
tem call telling the operating system to kill some other process. In UNIX this call
is Kill. The corresponding Win32 function is TerminateProcess. In both cases, the
killer must have the necessary authorization to do in the killee. In some systems,
when a process terminates, either voluntarily or otherwise, all processes it created
are immediately killed as well. Neither UNIX nor Windows works this way, how-
ever.

2.1.4 Process Hierarchies

In some systems, when a process creates another process, the parent process
and child process continue to be associated in certain ways. The child process can
itself create more processes, forming a process hierarchy. Note that unlike plants
and animals that use sexual reproduction, a process has only one parent (but zero,
one, two, or more children).

In UNIX, a process and all of its children and further descendants together
form a process group. When a user sends a signal from the keyboard, the signal is
delivered to all members of the process group currently associated with the key-
board (usually all active processes that were created in the current window). Indi-
vidually, each process can catch the signal, ignore the signal, or take the default
action, which is to be killed by the signal.

As another example of where the process hierarchy plays a role, let us look at
how UNIX initializes itself when it is started. A special process, called init, is
present in the boot image. When it starts running, it reads a file telling how many
terminals there are. Then it forks off one new process per terminal. These proc-
esses wait for someone to log in. If a login is successful, the login process exe-
cutes a shell to accept commands. These commands may start up more processes,
and so forth. Thus, all the processes in the whole system belong to a single tree,
with init at the root.

In contrast, Windows has no concept of a process hierarchy. All processes are
equal. The only hint of a process hierarchy is that when a process is created, the
parent is given a special token (called a handle) that it can use to control the
child. However, it is free to pass this token to some other process, thus invalidat-
ing the hierarchy. Processes in UNIX cannot disinherit their children.

90 PROCESSES AND THREADS CHAP. 2

2.1.S Process States

Although each process is an independent entity, with its own program counter
and intenal state, processes often need to interact with other processes. One proc-
ess may generate some output that another process uses as input. In the shell
command

cat chapter1 chapter2 chapter3 | grep tree

the first process, running cef, concatenates and outputs three files. The second
process, running grep, selects all lines containing the word “tree.”” Depending on
the relative speeds of the two processes (which depends on both the relative com-
plexity of the programs and how much CPU time each one has had), it may hap-
pen that grep is ready to run, but there is no input waiting for it. It must then
block until some input is available.

When a process blocks, it does so because logically it cannot continue, typi-
cally because it is waiting for input that is not yet available. It is also possible for
a process that is conceptually ready and able to run to be stopped because the op-
erating system has decided to allocate the CPU to another process for a while.
These two conditions are completely different. In the first case, the suspension is
inherent in the problem (you cannot process the user’s command line until it has
been typed). In the second case, it is a technicality of the system (not enough
CPUs to give each process its own private processor). In Fig. 2-2 we see a state
diagram showing the three states a process may be in:

1. Running (actually using the CPU at that instant).
2. Ready (runnable; temporarily stopped to let another process run).

3. Blocked (unable to run until some external event happens).

Logically, the first two states are similar. In both cases the process is willing to
run, only in the second one, there is temporarily no CPU available for it. The third
state is different from the first two in that the process cannot run, even if the CPU
has nothing else to do.

1. Process blocks for input

2. Scheduler picks another process
3. Scheduler picks this process

4. Input becomes available

Figure 2-2. A process can be in running, blocked, or rzady state. Transitions
between these states are as shown.

Four transitions are possible among these three states, as shown. Transition |
occurs when the operating system discovers that a process cannot continue right

SEC. 2.1 PROCESSES 91

now. In some systems the process can execute a system call, such as pause, to
get into blocked state. In other systems, including UNIX, when a process reads
from a pipe or special file (e.g., a terminal) and there is no input available, the
process is automatically blocked.

Transitions 2 and 3 are caused by the process scheduler, a part of the operat-
ing system, without the process even knowing about them. Transition 2 occurs
when the scheduler decides that the running process has run long enough, and it is
time to let another process have some CPU time. Transition 3 occurs when all the
other processes have had their fair share and it is time for the first process to get
the CPU to run again. The subject of scheduling, that is, deciding which process
should run when and for how long, is an important one; we will look at it later in
this chapter. Many algorithms have been devised to try to balance the competing
demands of efficiency for the system as a whole and faimess to individual proc-
esses. We will study some of them later in this chapter.

Transition 4 occurs when the external event for which a process was waiting
(such as the arrival of some input) happens. If no other process is running at that
instant, transition 3 will be triggered and the process will start running. Otherwise
it may have to wait in ready state for a little while until the CPU is available and
its turn comes.

Using the process model, it becomes much easier to think about what is going
on inside the system. Some of the processes run programs that carry out com-
mands typed in by a user. Other processes are part of the system and handle tasks
such as carrying out requests for file services or managing the details of running a
disk or a tape drive. When a disk interrupt occurs, the system makes a decision to
stop running the current process and run the disk process, which was blocked
waiting for that interrupt. Thus, instead of thinking about interrupts, we can think
about user processes, disk processes, terminal processes, and so on, which block
when they are waiting for something to happen. When the disk has been read or
the character typed, the process waiting for it is unblocked and is eligible to run
again.

This view gives rise to the model shown in Fig. 2-3. Here the lowest level of
the operating system is the scheduler, with a variety of processes on top of it. All
the interrupt handling and details of actually starting and stopping processes are
hidden away in what is here called the scheduler, which is actually not much
code. The rest of the operating system is nicely structured in process form. Few
real systems are as nicely structured as this, however.

2.1.6 Implementation of Processes

To implement the process model, the operating system maintains a table (an
array of structures), called the process table, with one entry per process. (Some
authors call these entries process control blocks.) This entry contains important
information about the process’ state, including its program counter, stack pointer,

92 PROCESSES AND THREADS CHAP. 2

Processes

Scheduler

Figure 2-3. The lowest layer of a process-structured operating system handles
interrupts and scheduling. Above that layer are sequential processes.

memory allocation, the status of its open files, its accounting and scheduling in-
formation, and everything else about the process that must be saved when the
process is switched from running to ready or blocked state so that it can be restart-
ed later as if it had never been stopped.

Figure 2-4 shows some of the key ticlds in a typical system. The fields in the
first column relate to process management. The other two relate to memory man-
agement and file management, respectively. It should be noted that precisely
which fields the process table has is highly system dependent, but this figure gives
a general idea of the kinds of information neecded.

Process management Memory management File management
Registers Pointer to text segment info Root directory
Program counter Pointer to data segment info Working directory
Program status word Pointer to stack segment info | File descriptors
Stack pointer User ID

Process state Group ID

Priority

Scheduling parameters

Process ID

Parent process

Process group

Signals

Time when process started
CPU time used

Children’s CPU time

Time of next alarm

Figure 2-4. Some of the fields of a typical process table entry.

Now that we have looked at the process table, it is possible to explain a little
mere about how the illusion of multiple sequential processes is maintained on one
(or each) CPU. Associated with each I/O class is a location (typically at a fixed
location near the bottom of memory) called the interrupt vector. It contains the

SEC. 2.1 PROCESSES 93

address of the interrupt service procedure. Suppose that user process 3 is running
when a disk interrupt happens. User process 3’s program counter, program status
word, and sometimes one or more registers are pushed onto the (current) stack by
the interrupt hardware. The computer then jumps to the address specified in the
interrupt vector. That is all the hardware does. From here on, it is up to the soft-
ware, in particular, the interrupt service procedure.

All interrupts start by saving the registers, often in the process table entry for
the current process. Then the information pushed onto the stack by the interrupt is
removed and the stack pointer is set to point to a temporary stack used by the
process handler. Actions such as saving the registers and setting the stack pointer
cannot even be expressed in high-level languages such as C, so they are per-
formed by a small assembly language routine, usually the same one for all inter-
rupts since the work of saving the registers is identical, no matter what the cause
of the interrupt is.

When this routine is finished, it calls a C procedure to do the rest of the work
for this specific interrupt type. (We assume the operating system is written in C,
the usual choice for all real operating systems.) When it has done its job, possibly
making some process now ready, the scheduler is called to see who to run next.
After that, control is passed back to the assembly language code to load up the
registers and memory map for the now-current process and start it running. Inter-
rupt handling and scheduling are summarized in Fig. 2-5. It is worth noting that
the details vary somewhat from system to system.

1. Hardware stacks program counter, etc.

2. Hardware loads new program counter from interrupt vector.
3. Assembly language procedure saves registers.

4. Assembly language procedure sets up new stack.

5. C interrupt service runs (typically reads and buffers input).

6. Scheduler decides which process is to run next.

7. C procedure returns to the assembly code.

8. Assembly language procedure starts up new current process.

Figure 2-5. Skeleton of what the lowest level of the operating system does
when an interrupt occurs.

When the process finishes, the operating system displays a prompt character and
waits for a new command. When it receives the command, it loads a new program
into memory, overwriting the first one.

2.1.7 Modeling Multiprogramming
When multiprogramming is used, the CPU utilization can be improved.

Crudely put, if the average process computes only 20% of the time it is sitting in
memory, with five processes in memory at once, the CPU should be busy all the

94 PROCESSES AND THREADS CHAP. 2

time. This model is unrealistically optimistic, however, since it tacitly assumes
that all five processes will never be waiting for IO at the same time.

A better model is to look at CPU usage from a probabilistic viewpoint. Sup-
pose that a process spends a fraction p of its time waiting for IO to complete.
With n processes in memory at once, the probability that all # processes are wait-
ing for IO (in which case the CPU will be idle) is p”. The CPU utilization is then
given by the formula

CPU utilization=1-p"

Figure 2-6 shows the CPU utilization as a function of n#, which is called the
degree of multiprogramming.

. 20% I/O wait

£ 100 [~ 5 ' »
]

= 50% |/O wait

9 80 [®

£

s 60 80% /O wait
s

Y 40

5

T 20

(&)

I I | I I I I
o] 1 2 3 4 5 6 7 8 9 10
Degree of multiprogramming

Figure 2-6. CPU utilization as a function of the number of processes in memory.

From the figure it is clear that if processes spend 80% of their time waiting for
I/0, at least 10 processes must be in memory at once to get the CPU waste below
10%. When you realize that an interactive process waiting for a user to type some-
thing at a terminal is in [/O wait state, it should be clear that I/O wait times of
80% and more are not unusual. But even on servers, processes doing a lot of disk
I/0 will often have this percentage or more.

For the sake of complete accuracy, it should be pointed out that the proba-
bilistic model just described is only an approximation. It implicitly assumes that
all n processes are independent, meaning that it is quite acceptable for a system
with five processes in memory to have three running and two waiting. But with a
single CPU, we cannot have three processes running at once, so a process becom-
ing ready while the CPU is busy will have to wait. Thus the processes are not in-
dependent. A more accurate model can be constructed using queueing theory, but
the point we are making—multiprogramming lets processes use the CPU when it
would otherwise become 1dle—is, of course, still valid, even if the true curves of
Fig. 2-6 are slightly different from those shown in the figure.

SEC. 2.1 PROCESSES 9§

Even though the model of Fig. 2-6 is simple-minded, it can nevertheless be
used to make specific, although approximate, predictions about CPU performance.
Suppose, for example, that a computer has 512 MB of memory, with the operating
system taking up 128 MB and each user program also taking up 128 MB. These
sizes allow three user programs to be in memory at once. With an 80% average
/O wait, we have a CPU utilization (ignoring operating system overhead) of
1 —9.8% or about 49%. Adding another 512 MB of memory allows the system to
go from three-way multiprogramming to seven-way multiprogramming, thus rais-
ing the CPU utilization to 79%. In other words, the additional 512 MB will raise
the throughput by 30%.

Adding yet another 512 MB would only increase CPU utilization from 79% to
®1%, thus raising the throughput by only another 12%. Using this model the com-
puter’s owner might decide that the first addition is a good investment but that the
second is not.

2.2 THREADS

In traditional operating systems, each process has an address space and a sin-
gle thread of control. In fact, that is almost the definition of a process. Neverthe-
less, there are frequently situations in which it is desirable to have multiple
threads of control in the same address space running in quasi-parallel, as though
they were (almost) separate processes (except for the shared address space). In
the following sections we will discuss these situations and their implications.

2.2.1 Thread Usage

Why would anyone want to have a kind of process within a process? It turns
out there are several reasons for having these miniprocesses, called threads. Let
us now examine some of them. The main reason for having threads is that in many
applications, multiple activities are going on at once. Some of these may block
from time to time. By decomposing such an application into multiple sequential
threads that run in quasi-parallel, the programming model becomes simpler.

We have seen this argument before. It is precisely the argument for having
processes. Instead of thinking about interrupts, timers, and context switches, we
can think about parallel processes. Only now with threads we add a new element:
the ability for the parallel entities to share an address space and all of its data
among themselves. This ability is essential for certain applications, which is why
having multiple processes (with their separate address spaces) will not work.

A second argument for having threads is that since they are lighter weight
than processes, they are easier (i.e., faster) to create and destroy than processes.
In many systems, creating a thread goes 10—100 times faster than creating a proc-
ess. When the number of threads needed changes dynamically and rapidly, this
property is useful to have.

96 PROCESSES AND THREADS CHAP. 2

A third reason for having threads is also a performance argument. Threads
yicld no performance gain when all of them are CPU bound, but when there is
substantial computing and also substantial I/O, having threads allows these activi-
ties to overlap, thus speeding up the application.

Finally, threads are useful on systems with multiple CPUs, where real paral-
lelism is possible. We will come back to this issue in Chap. 8.

It is easiest to see why threads are useful by looking at some concrete ex-
amples. As a first example, consider a word processor. Word processors usually
display the document being created on the screen formatied exactly as it will
appear on the printed page. In particular, all the line breaks and page breaks are
in their correct and final positions, so that the user can inspect them and change
the document if necd be (e.g., to eliminate widows and orphans—incomplete top
and bottom lines on a page, which are considered esthetically unpleasing).

Suppose that the user is writing a book. From the author’s point of view, it is
casiest to keep the entire book as a single file to make it easier to search for to-
pics, perform global substitutions, and so on. Alternatively, each chapter might be
a separate file. However, having every section and subsectien as a separate file is
a real nuisance when global changes have to be made to the entire book, since
then hundreds of files have to be individually edited. For example, if proposed
standard xxxx is approved just before the book goes to press, all occurrences of
“Draft Standard xxxx’’ have to be changed to “Standard xxxx” at the last minute.
If the entite book is one file, typically a single command can do all the substitu-
tions. In contrast, if the book is spread over 300 files, cach one must be edited
separately.

Now consider what happens when the user suddenly deletes one sentence
from page | of an 800-page document. After checking the changed page for cor-
rectness, he now wants to make another change on page 608 and types in a com-
mand telling the word processor to go to that page (possibly by searching for a
phrase occurring only there). The word processor is now forced to reformat the
entire book up to page 600 on the spot because it does not know what the first line
of page 600 will be until it has processed all the previous pages. There may be a
substantial delay before page 600 can be displayed, leading to an unhappy user.

Threads can help here. Suppose that the word processor is written as a two-
threaded program. One thread interacts with the user and the other handles refor-
matting in the background. As soon as the sentence is deleted from page 1, the
interactive thread tells the reformatting thread to reformat the whole book. Mean-
while, the interactive thread continues to listen to the keyboard and mouse and
responds to simple commands like scrolling page | while the other thread is com-
puting madly in the background. With a little luck, the reformatting will be com-
pleted before the user asks to see page 600, so it can be displayed instantly.

While we are at it, why not add a third thread? Many word processors have a
feature of automatically saving the entire file to disk every few minutes to protect
the user against losing a day’s work in the event of a program crash, system crash,

BEC. 22 THREADS 97

or power failure. The third thread can handle the disk backups without interfering
with the other two. The situation with three threads is shown in Fig. 2-7.

Kernel
Keyboard Disk

Figure 2-7. A word processor with three threads.

If the program were single-threaded, then whenever a disk backup started,
commands from the keyboard and mouse would be ignored until the backup was
fmished. The user would surely perceive this as sluggish performaiice. Alterna-
tively, keyboard and mouse events could interrupt the disk backup, allowing good
performance but leading to a complex interrupt-driven programming model. With
three threads, the programming model is much simpler. The first thread just
interacts with the user. The second thread reformats the document when told to.
The third thread writes the contents of RAM to disk periodically.

It should be clear that having three separate processes would not work here
because all three threads neecd to operate on the document. By having three
threads instead of three processes, they share a common memory and thus all have
access to the document being edited.

An analogous situation exists with many other interactive programs. For ex-
ample, an electronic spreadsheet is a program that allows a user to maintain a ma-
trix, some of whose elements are data provided by the user. Other elements are
computed based on the input data using potentially complex formulas. When a
user changes one element, many other elements may have to be recomputed. By
having a background thread do the recomputation, the interactive thread can allow
the user to make additional changes while the computation is going on. Similarly,
a third thread can handle periodic backups to disk on its own.

Now consider yet another example of where threads are useful: a server for a
Werld Wide Web site. Requests for pages come in and the requested page is sent
back to the client. At most Web sites, some pages are more commonly accessed

98 PRO@CESSES AND THREADS CHAP. 2

than other pages. For example, Sony’s home page is accessed far more than a
page deep in the tree containing the technical specifications of any particular cam-
corder. Web servers use this fact to improve performance by maintaining a collec-
tion of heavily used pages in main memery to eliminate the need to go to disk to
get them. Such a collection is called a cache and is used in maiy other contexts as
well. We saw CPU caches in Chap. 1, for example.

One way to organize the Web server is shown in Fig. 2-8(a). Here one thread,
the dispatcher, reads incoming requests for work from the network. After exa-
mining the request, it chooses an idle (i.e., blocked) worker thread and hands it
the request, possibly by writing a pointer to the message into a special word asso-
ciated with each thread. The dispatcher then wakes up the sleeping worker, mov-
ing it from blocked state to ready state.

Web server process

Dispatcher thread

Worker thread Hsat

> space

Web page cache

Kernel

Kernel space

Network
connection

Figure 2-8. A multithreaded Web server.

When the worker wakes up, it checks to see if the request can be satisficd
from the Web page cache, to which all threads have access. If not, it starts a read
operation to get the page from the disk and blocks until the disk operation com-
pletes. When the thread blocks on the disk operation, another thread is chosen to
run, possibly the dispatcher, in order to acquire more work, or possibly another
worker that is now ready to run.

This model allows the server to be written as a collection of sequential
threads. The dispatcher’s program consists of an infinite loop for getting a work
request and handing it off to a worker. Each worker’s code consists of an infinite
loep consisting of accepting a request from the dispatcher and checking the Web
cache to see if the page is present. If so, it is returned to the client, and the worker
blecks waiting for a new request. If not, it gets the page from the disk, returns it
to the client, and blocks waiting for a new request.

SEC. 22 THREADS 99

A rough outline of the code is given in Fig. 2-9. Here, as in the rest of this
book, TRUE is assumed to be the constant 1. Also, buf and page are structures
appropriate for holding a work request and a Web page, respectively.

while (TRUE) { while (TRUE) {
get_next_request(&buf); wait_for_ work(&buf)
handoff_work(&buf); look_ for_page _ in_cache(&buf, &page);
} if (page_not_in_cache(&page))

read_page_from_disk(&buf, &page);
return_page(&page);

(a) (b)

Figure 2-9. A reugh outline of the code for Fig. 2-8. (a) Dispatcher thread. (b)
Worker thread.

Consider how the Web server could be written in the absence of threads. One
possibility is to have it operate as a single thread. The main loop of the Web ser-
ver gets a request, examines it, and carries it out to completion before getting the
next one. While waiting for the disk, the server is idle and does not process any
other incoming requests. If the Web server is running on a dedicated machine, as
is commonly the case, the CPU is simply idle while the Web server is waiting for
the disk. The net result is that many fewer requests/sec can be processed. Thus
threads gain considerable performance, but each thread is programmed sequential-
ly, in the usual way.

So far we have seen two possible designs: a multithreaded Web server and a
single-threaded Web server. Suppose that threads are not available but the system
designers find the performance loss due to single threading unacceptable. If a
nonblocking version ef the read system call is available, a third approach is pos-
sible. When a request comes in, the one and only thread examines it. If it can be
satisfied from the cache, fine, but if not, a nonblocking disk eperation is started.

The server records the state of the current request in a table and then goes and
gets the next event. The next event may either be a request for new work or a
reply from the disk about a previous operation. If it is new work, that work is
started. If it is a reply from the disk, the relevant informatien is fetched from the
table and the reply processed. With nonblocking disk I/O, a reply probably will
have to take the form of a signal or interrupt.

In this design, the “sequential process’ model that we had in the first two
cases is lost. The state of the computation must be explicitly saved and restored in
the table every time the server switches from working on one request to another.
In effect, we are simulating the threads and their stacks the hard way. A design
like this, in which each computation has a saved state, and there exists some set of
events that can occur to change the state is called a finite-state machine. This
concept is widely used throughout computer science.

100 PROCESSES AND THREADS CHAP. 2

It should now be clear what threads have to offer. They make it possible to re-
tain the idea of sequential processes that make blocking system calls (e.g., for disk
I/O) and still achieve parallelism. Blocking system calls make programming easi-
er, and parallelism improves performance. The single-threaded server retains the
simplicity of blocking system calls but gives up performance. The third approach
achieves high performance through parallelism but uses nonblocking calls and in-
terrupts and is thus is hard to program. These models are summarized in Fig. 2-10.

Model Characteristics
Threads Parallelism, blocking system calls
Single-threaded process | No parallelism, blocking system calls

Finite-state machine Parallelism, nonblocking system calls, interrupts

Figure 2-10. Three ways to construct a server.

A third example where threads are useful is in applications that must process
very large amounts of data. The normal approach is to read in a block of data,
process it, and then write it out again. The problem here is that if only blocking
system calls are available, the process blocks while data are coming in and data
are going out. Having the CPU go idle when there is lots of computing to do is
clearly wasteful and should be avoided if possible.

Threads offer a solution. The process could be structured with an input thread,
a processing thread, and an output thread. The input thread reads data into an
input buffer. The processing thread takes data out of the input buffer, processes
them, and puts the results in an output buffer. The output buffer writes these re-
sults back to disk. In this way, input, output, and processing can all be going on at
the same time. Of course, this model only works if a system call blocks only the
calling thread, not the entire process.

2.2.2 The Classical Thread Model

Now that we have seen why threads might be useful and how they can be
used, let us investigate the idea a bit more closely. The process model is based on
two independent concepts: resource grouping and execution. Sometimes it is use-
ful to separate them; this is where threads come in. First we will look at the classi-
cal thread model; after that we will examine the Linux thread model, which blurs
the line between processes and threads,

One way of looking at a process is that it is a way to group related resources
together. A process has an address space containing program text and data, as
well as other resources. These resource may include open files, child processes,
pending alarms, signal handlers, accounting information, and more. By putting
them together in the form of a process, they can be managed more easily.

SEC. 2.2 THREADS 101

The other concept a process has is a thread of execution, usually shortened to
just thread. The thread has a program counter that keeps track of which instruc-
tion to execute next. It has registers, which hold its current working variables. It
has a stack, which contains the execution history, with one frame for each proce-
dure called but not yet returned from. Although a thread must execute in some
process, the thread and its process are different concepts and can be treated sepa-
rately. Processes are used to group resources together; threads are the entities
scheduled for execution on the CPU.

What threads add to the process model is to allow multiple executions to take
place in the same process environment, to a large degree independent of one an-
other. Having multiple threads running in parallel in one process is analogous to
having multiple processes running in parallel in one computer. In the former case,
the threads share an address space and other resources. In the latter case, proc-
esses share physical memory, disks, printers, and other resources. Because threads
have some of the properties of processes, they are sometimes called lightweight
processes. The term multithreading is also used to describe the situation of al-
lowing multiple threads in the same process. As we saw in Chap. 1, some CPUs
have direct hardware support for multithreading and allow thread switches to hap-
pen on a nanosecond time scale.

In Fig. 2-11(a) we see three traditional processes. Each process has its own
address space and a single thread of control. In contrast, in Fig. 2-11(b) we see a
single process with three threads of control. Although in both cases we have three
threads, in I'ig. 2-11(a) each of them operates in a different address space, where-
as in Fig. 2-11(b) all three ofthem share the same address space.

Process 1 Process 1 Process 1 Process

User

space
Thread Thread

Kernel
space Kernel Kernel

@ ®)

Figure 2-11. (a) Three processes each with one thread. (b) One process with
three threads.

When a multithreaded process is run on a single-CPU system, the threads take
turns running. In Fig. 2-1, we saw how multiprogramming of processes works.
By switching back and forth among multiple processes, the system gives the

102 PROCESSES AND THREADS CHAP. 2

illusion of separate sequential processes running in parallel. Multithreading works
the same way. The CPU switches rapidly back and forth among the threads, pro-
viding the illusion that the threads are running in parallel, albeit on a slower CPU
than the real one. With three compute-bound threads in a process, the threads
would appear to be running in parallel, each one on a CPU with one-third the
speed of the real CPU.

Different threads in a process are not as independent as different processes.
All threads have exactly the same address space, which means that they also share
the same global variables. Since every thread can access every memory address
within the process’ address space, one thread can read, write, or even wipe out an-
other thread’s stack. There is no protection between threads because (1) it is im-
possible, and (2) it should not be necessary. Unlike different processes, which
may be from different users and which may be hostile to one another, a process is
always owned by a single user, who has presumably created multiple threads so
that they can cooperate, not fight. In addition to sharing an address space, all the
threads can share the same set of open flles, child processes, alarms, and signals,
an so on, as shown in Fig. 2-12. Thus the organization of Fig. 2-11(a) would be
used when the three processes are essentially unrelated, whereas Fig. 2-11(b)
would be appropriate when the three threads are actually part of the same job and
are actively and closely cooperating with each other.

Per process items Per thread items
Address space Program counter
Global variables Registers

Open files Stack

Child processes State

Pending alarms
Signals and signal handlers
Accounting information

Figure 2-12. The first column lists some items shared by all threads in a proc-
ess. The second one lists some items private to each thread.

The items in the first column are process properties, not thread properties. For
example, if one thread opens a file, that file is visible to the other threads in the
process and they can read and write it. This is logical, since the process is the unit
of resource management, not the thread. If each thread had its own address space,
open files, pending alarms, and so on, it would be a separate process. What we are
trying to achieve with the thread concept is the ability for multiple threads of ex-
ecution to share a set of resources so that they can work together closely to per-
form some task.

Like a traditional process (i.e., a process with only one thread), a thread can
be in any one of several states: running, blocked, ready, or terminated. A running
thread currently has the CPU and is active. A blocked thread is waiting for some

SEC. 22 THREADS 103

event to unblock it. For example, when a thread performs a system call to read
from the keyboard, it is blocked until input is typed. A thread can block waiting
for some external event to happen or for some other thread to unblock it. A ready
thread is scheduled to run and will as soon as its turn comes up. The transitiens
between thread states are the same as the transitions between process states and
are illustrated in Fig. 2-2.

It is important to realize that each thread has its own stack, as illustrated in
Fig. 2-13. Each thread’s stack contains one frame for each procedure called but
not yet returned from. This frame contains the procedure’s local variables and the
return address to use when the procedure call has finished. For example, if proce-
dure X calls procedure Y and Y calls procedure Z, then while Z is executing, the
frames for X, Y, and Z will all be on the stack. Each thread will generally call dif-
ferent procedures and a thus have a different execution history. This is why each
thread needs its own stack.

Thread 2

Thread 1 \ Threfads
A

|_—Process

Thread 3's stack

Jjh

Kernel

Figure 2-13. Each thread has its own stack.

When multithreading is present, processes normally start with a single thread
present. This thread has the ability to create new threads by calling a library pro-
cedure, for example, thread_create. A parameter to thread_create typically
specifies the name of a procedure for the new thread to run. It is not necessary (or
even possible) to specify anything about the new thread’s address space, since it
automatically runs in the address space of the creating thread. Sometimes threads
are hierarchical, with a parent-child relationship, but often no such relationship
exists, with all threads being equal. With or without a hierarchical relationship,
the creating thread is usually returned a thread identifier that names the new
thread.

When a thread has finished its work, it can exit by calling a library procedure,
say, thread_exit. It then vanishes and is no longer schedulable. In some thread
systems, one thread can wait for a (specific) thread to exit by calling a procedure,

104 PROCESSES AND THREADS CHAP. 2

for example, thread_join. This procedure blocks the calling thread until a (specif-
ic) thread has exited. In this regard, thread creation and termination is very much
like process creation and termination, with approximately the same options as
well.

Another common thread call is thread_yield, which allows a thread to volun-
tarily give up the CPU to let another thread run. Such a call is important because
there is no clock interrupt to actually enforce multiprogramming as there is with
processes. Thus it is important for threads to be polite and voluntarily surrender
the CPU from time to time to give other threads a chance to run. Other calls allow
one thread to wait for another thread to finish some work, for a thread to announce
that it has fmished some work, and so on.

While threads are often useful, they also introduce a number of complications
into the programming model. To start with, consider the effects of the UNIX fork
system call. If the parent process has multiple threads, should the child also have
them? If not, the process may not function properly, since all of them may be
essential.

However, if the child process gets as many threads as the parent, what hap-
pens if a thread in the parent was blocked on a read call, say, from the keyboard?
Are two threads now blocked on the keyboard, one in the parent and one in the
child? When a line is typed, do both threads get a copy of it? Only the parent?
Only the child? The same problem exists with open network connections.

Another class of problems is related to the fact that threads share many data
structures. What happens if one thread closes a file while another one is still read-
ing from it? Suppose that one thread notices that there is too little memory and
starts allocating more memory. Partway through, a thread switch occurs, and the
new thread also notices that there is too little memory and also starts allocating
more memory. Memory will probably be allocated twice. These problems can be
solved with some effort, but careful thought and design are necded to make mul-
tithreaded programs work correctly.

2.2.3 P@OSIX Threads

To make it possible to write portable threaded programs, IEEE has defined a
standard for threads in IEEE standard 1003.1c. The threads package it defines is
called Pthreads. Most UNIX systems support it. The standard defines over 60
function calls, which is far too many to go over here. Instead we will just de-
scribe a few of the major ones to give an idea of how it works. The calls we will
describe are listed in Fig. 2-14.

All Pthreads threads have certain properties. Each one has an identifier, a set
of registers (including the program counter), and a set of attributes, which are
stored in a structure. The attributes include the stack size, scheduling parameters,
and other items needed to use the thread.

PRC. 212 THREADS 108

Thread call Description

Pthread_ create Create a new thread

Pthread._ exit Terminate the calling thread

Pthread_ join Wait for a specific thread to exit

Pthread. yield Release the CPU to let another thread run
Pthread_ attr init Create and initialize a thread’s attribute structure
Pthread_attr_destroy | Remove a thread’s attribute structure

Figure 2-14. Some of the Pthreads function calls.

A new thread is created using the pthread_create call. The thread identifier of
the newly created thread is returned as the function value. This call is intention-
ally very much like the fork system call, with the thread identifier playing the role
of the PID, mostly for identifying threads referenced in other calls.

When a thread has finished the work it has been assigned, it can terminate by
calling pthread_exit. This call stops the thread and releases its stack.

Often a thread needs to wait for another thread to finish its work and exit be-
fore continuing. The thread that is waiting calls pthread_join to wait for a specific
other thread to terminate. The thread identifier of the thread to wait for is given as
a parameter.

Sometimes it happens that a thread is not logically blocked, but fecls that it
has run long enough and wants to give another thread a chance to run. It can
accomplish this goal by calling pthread_yield. There is no such call for processes
because the assumption there is that processes are fiercely competitive and each
one wants all the CPU time it can get. However, since the threads of a process are
working together and their code is invariably written by the same programmer,
sometimes the programmer wants them to give each other upa chance.

The next two thread calls deal with attributes. Pthread _attr_init creates the
attribute structure associated with a thread and initializes it to the default values.
These values (such as the priority) can be changed by manipulating ficlds in the
attribute structure.

Finally, pthread_attr_destroy removes a thread’s attribute structure, freeing
up its memory. It does not affect threads using it; they continue to exist.

To get a better feel for how Pthreads works, consider the simple example of
Fig. 2-15. Here the main program loops NUMBER_@F_THREADS times, creat-
ing a new thread on each iteration, after announcing its intention. If the thread
creation fails, it prints an error message and then exits. After creating all the
threads, the main program exits.

When a thread is created, it prints a one-line message announcing itself, then
it exits. The order in which the various messages are interleaved is nondetermi-
nate and may vary on consecutive runs of the program.

106 PROCESSES AND THREADS CHAP. 2

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>

#define NUMBER_OF_THREADS 10
void *print_hello_world(void *tid)

/* This function prints the thread’s identifier and then exits. */
printf("Hello World. Greetings from thread %d0, tid);
pthread_exit(NULL);

}

int main(int argc, char *argvl])

{

/* The main program creates 10 threads and then exits. */
pthread_t threads|[NUMBER_OF_THREADS];
int status, i;

for(i=0; i < NUMBER_OF_THREADS; i++) {
printf("Main here. Creating thread %dO0, i);
status = pthread_ create(&threads]i], NULL, print_hello_world, (void *)i);

if (status !=0) {
printf(*Oops. pthread_ create returned error code %d0, status);
exit(-1);
}
}
exit(NULL);

Figure 2-15. An example program using threads.

The Pthreads calls described above are not the only ones by any means; there
are many more. We will examine some of the others later after we have discussed
process and thread synchronization.

2.2.4 Implementing Threads in User Space

There are two main ways to implement a threads package: in user space and
in the kernel. The choice is moderately controversial, and a hybrid imple-
mentation is also possible. We will now describe these methods, along with their
advantages and disadvantages.

The first method is to put the threads package entirely in user space. The ker-
nel knows nothing about them. As far as the kemel is concemed, it is managing
ordinary, single-threaded processes. The first, and most obvious, advantage is that
a user-level threads package can be implemented on an operating system that does

SEC. 22 THREADS 107

not support threads. All operating systems used to fall into this category, and even
now some still do. With this approach, threads are implemented by a library.

All of these implementations have the same general structure, which is illus-
trated in Fig. 2-16(a). The threads run on top of a run-time system, which is a col-
lection of procedures that manage threads. We have seen four of these already:
pthread_create, pthread _exit, pthread _join, and pthread _yield, but usually there
are more.

Process Thread Process Thread

. T | _/
\

= aam |G

I;;;nczl { / g E Kernel /E %
X, }
/ X e

Run-time Thread Process Process Thread
system table table table table

FKigure 2-16. (a) A user-level threads package. (b) A threads package managed
by the kernel.

When threads are managed in user space, each process needs its own private
thread table to keep track of the threads in that process. This table is analogous
to the kemnel’s process table, except that it keeps track only of the per-thread prop-
erties, such as each thread’s program counter, stack pointer, registers, state, and so
forth. The thread table is managed by the run-time system. When a thread is
moved to ready state or blocked state, the information needed to restart it is stored
in the thread table, exactly the same way as the kernel stores information about
processes in the process table.

When a thread does something that may cause it to become blocked locally,
for example, waiting for another thread in its process to complete some work, it
calls a run-time system procedure. This procedure checks to see if the thread must
be put into blocked state. If so, it stores the thread’s registers (i.e., its own) in the
thread table, looks in the table for a ready thread to run, and reloads the machine
registers with the new thread’s saved values. As soon as the stack pointer and
program counter have been switched, the new thread comes to life again automat-
ically. If the machine has an instruction to store all the registers and another one
to load them all, the entire thread switch can be done in just a handful of instruc-
tions. Doing thread switching like this is at least an order of magnitude—maybe

108 PROCESSES AND THREADS CHAP. 2

more—faster than trapping to the kernel and is a strong argument in favor of
user-level threads packages.

However, there is one key difference with processes. When a thread is fin-
ished running for the moment, for example, when it calls thread_yield, the code
of thread_yield can save the thread’s information in the thread table itself. Fur-
thermore, it can then call the thread scheduler to pick another thread to run. The
procedure that saves the thread’s state and the scheduler are just local procedures,
so invoking them is much more efficient than making a kemel call. Among other
issues, no trap is needed, no context switch is needed, the memory cache need not
be flushed, and so on. This makes thread scheduling very fast.

User-level threads also have other advantages. They allow each process to
have its own customized scheduling algorithm. For some applications, for exam-
ple, those with a garbage collector thread, not having to worry about a thread
being stopped at an inconvenient moment is a plus. They also scale better, since
kemel threads invariably require some table space and stack space in the kernel,
which can be a problem if there are a very large number of threads.

Despite their better performance, user-level threads packages have some
major problems. First among these is the problem of how blocking system calls
are implemented. Suppose that a thread reads from the keyboard before any keys
have been hit. Letting the thread actually make the system call is unacceptable,
since this will stop all the threads. One of the main goals of having threads in the
first place was to allow each one to use blocking calls, but to prevent one blocked
thread from affecting the others. With blocking system calls, it is hard to sec how
this goal can be achieved readily.

The system calls could all be changed to be nonblocking (e.g., a read on the
keyboard would just return O bytes if no characters were already buffered), but
requiring changes to the operating system is unattractive. Besides, one of the arg-
uments for user-level threads was precisely that they could run with existing oper-
ating systems. In addition, changing the semantics of read will require changes to
many user programs.

Another alternative is possible in the event that it is possible to tell in advance
if a call will block. In some versions of UNIX, a system call, select, exists, which
allows the caller to tell whether a prospective read will block. When this call is
present, the library procedure read can be replaced with a new one that first does
a select call and then only does the read call if it is sate (i.e., will not block). If
the read call will block, the call is not made. Instead, another thread is run. The
next time the run-time system gets control, it can check again to see if the read is
now safe. This approach requires rewriting parts of the system call library, is inef-
ficient and inelegant, but there is little choice. The code placed around the system
call to do the checking is called a jacket or wrapper.

Somewhat analogous to the problem of blocking system calls is the problem
of page faults. We will study these in Chap. 3. For the moment, it is sufficient to
say that computers can be set up in such a way that not all of the program is in

SEC. 22 THREADS 109

main memory at once. If the program calls or jumps to an instruction that is not in
memory, a page fault occurs and the operating system will go and get the missing
instruction (and its neighbors) from disk. This is called a page fault. The process
is blocked while the necessary instruction is being located and read in. If a thread
causes a page fault, the kernel, not even knowing about the existence of threads,
naturally blocks the entire process until the disk /O is complete, even though
other threads might be runnable.

Another problem with user-level thread packages is that if a thread starts run-
ning, no other thread in that process will ever run unless the first thread volun-
tarily gives up the CPU. Within a single process, there are no clock interrupts,
making it impossible to schedule processes round-robin fashion (taking turns).
Unless a thread enters the run-time system of its own free will, the scheduler will
never get a chance.

One possible solution to the problem of threads running forever is to have the
run-time system request a clock signal (interrupt) once a second to give it control,
but this, too, is crude and messy to program. Periodic clock interrupts at a higher
frequency are not always possible, and even if they are, the total overhead may be
substantial. Furthermore, a thread might also need a clock interrupt, interfering
with the run-time system’s use of the clock.

Another, and really the most devastating, argument against user-level threads
is that programmers generally want threads precisely in applications where the
threads block often, as, for example, in a multithreaded Web server. These threads
are constantly making system calls. Once a trap has occurred to the kemel to
carry out the system call, it is hardly any more work for the kernel to switch
threads if the old one has blocked, and having the kernel do this eliminates the
necd for constantly making select system calls that check to see if read system
calls are safe. For applications that are essentially entirely CPU bound and rarely
block, what is the point of having threads at all? No one would seriously propose
computing the first # prime numbers or playing chess using threads because there
is nothing to be gained by doing it that way.

2.2.5 Implementing Threads in the Kernel

Now let us consider having the kernel know about and manage the threads.
No run-time system is needed in each, as shown in Fig. 2-16(b). Also, there is no
thread table in each process. Instead, the kemnel has a thread table that keeps track
of all the threads in the system. When a thread wants to create a new thread or
destroy an existing thread, it makes a kernel call, which then does the creation or
destruction by updating the kemnel thread table.

The kernel’s thread table holds each thread’s registers, state, and other infor-
mation. The information is the same as with user-level threads, but now kept in
the kemel instead of in user space (inside the run-time system). This information
is a subset of the information that traditional kernels maintain about their single-

110 PROCESSES AND THREADS CHAP. 2

threaded processes, that is, the process state. In addition, the kemel also main-
tains the traditional process table to keep track of processes.

All calls that might block a thread are implemented as system calls, at consid-
erably greater cost than a call to a run-time system procedure. When a thread
blocks, the kemnel, at its option, can run either another thread from the same proc-
ess (if one is ready) or a thread from a different process. With user-level threads,
the run-time system keeps running threads from its own process until the kernel
takes the CPU away from it (or there are no ready threads left to run).

Due to the relatively greater cost of creating and destroying threads in the ker-
nel, some systems take an environmentally correct approach and recycle their
threads. When a thread is destroyed, it is marked as not runnable, but its kernel
data structures are not otherwise affected. Later, when a new thread must be creat-
cd, an old thread is reactivated, saving some overhead. Thread recycling is also
possible for user-level threads, but since the thread management overhead is much
smaller, there is less incentive to do this.

Kemel threads do not require any new, nonblocking system calls. In addition,
if one thread in a process causes a page fault, the kernel can easily check to see if
the process has any other runnable threads, and if so, run one of them while wait-
ing for the required page to be brought in from the disk. Their main disadvantage
is that the cost of a system call is substantial, so if thread operations (creation, ter-
mination, etc.) are common, much more overhead will be incurred.

While kernel threads solve some problems, they do not solve all problems.
IFor example, what happens when a multithreaded process forks? Does the new
process have as many threads as the old one did, or does it have just one? In
many cases, the best choice depends on what the process is planning to do next. If
it is going to call exec to start a new program, probably one thread is the correct
choice, but if it continues to execute, reproducing all the threads is probably the
right thing to do.

Another issue is signals. Remember that signals are sent to processes, not to
threads, at least in the classical model. When a signal comes in, which thread
should handle it? Possibly threads could register their interest in certain signals,
so when a signal came in it would be given to the thread that said it wants it. But
what happens if two or more threads register for the same signal. These are only
two of the problems threads introduce, but there are more.

2.2.6 Hybrid Implementations

Various ways have been investigated to try to combine the advantages of
user-level threads with kemel-level threads. One way is use kernel-level threads
and then multiplex user-level threads onto some or all of the kemel threads, as
shown in Fig. 2-17. When this approach is used, the programmer can determine
how many kernel threads to use and how many user-level threads to multiplex on
each one. This model gives the ultimate in flexibility.

SEC. 22 THREADS 111

Multiple user threads
on a kernel thread

S

User
space

i Kernel
Kernel -— Kernel thread j space

Figure 2-17. Multiplexing user-level threads onto kemel-level threads.

With this approach, the kemel is aware of only the kernel-level threads and
schedules those. Some of those threads may have multiple user-level threads mul-
tiplexed on top of them. These user-level threads are created, destroyed, and
scheduled just like user-level threads in a process that runs on an operating system
without multithreading capability. In this model, each kernel-level thread has
some set of user-level threads that take turns using it.

2.2.7 Scheduler Activations

While kernel threads are better than user-level threads in some key ways, they
are also indisputably slower. As a consequence, researchers have looked for ways
to improve the situation without giving up their good properties. Below we will
describe one such approach devised by Anderson et al. (1992), called scheduler
activations. Related work is discussed by Edler et al. (1988) and Scott et al.
(1990).

The goals of the scheduler activation work are to mimic the functionality of
kemel threads, but with the better performance and greater flexibility usually as-
sociated with threads packages implemented in user space. In particular, user
threads should not have to make special nonblocking system calls or check in ad-
vance if it is safe to make certain system calls. Nevertheless, when a thread blocks
on a system call or on a page fault, it should be possible to run other threads with-
in the same process, if any are ready.

Efficiency is achieved by avoiding unnecessary transitions between user and
kemel space. If a thread blocks waiting for another thread to do something, for
example, there is no reason to involve the kemel, thus saving the overhead of the
kernel-user transition. The user-space run-time system can block the synchroniz-
ing thread and schedule a new one by itself.

112 PROCESSES AND THREADS CHAP. 2

When scheduler activations are used, the kernel assigns a certain number of
virtual processors to each process and lets the (user-space) run-time system allo-
cate threads to processors. This mechanism can also be used on a multiprocessor
where the virtual processors may be real CPUs. The number of virtual processors
allocated to a process is initially one, but the process can ask for more and can
also return processors it no longer needs. The kernel can also take back virtual
processors already allecated in order to assign them to more needy, processes.

The basic idea that makes this scheme work is that when the kemel knows
that a thread has blocked (e.g., by its having executed a blocking system call or
caused a page fault), the kernel notifies the process’ run-time system, passing as
parameters on the stack the number of the thread in question and a description of
the event that occurred. The notification happens by having the kernel activate the
run-time system at a known starting address, roughly analogous to a signal in
UNIX. This mechanism is called an upcall.

®nce activated like this, the run-time system can reschedule its threads, typi-
cally by marking the current thread as blocked and taking another thread from the
ready list, setting up its registers, and restarting it. Later, when the kernel learns
that the original thread can run again (e.g., the pipe it was trying to read from now
contains data, or the page it faulted over has been brought in from disk), it makes
another upcall to the run-time system to inform it of this event. The run-time sys-
tem, at its own discretion, can either restart the blocked thread immediately or put
it on the ready list to be run later.

When a hardware interrupt occurs while a user thread is running, the inter-
rupted CPU switches into kernel mode. If the interrupt is caused by an event not
of interest to the interrupted process, such as completion of another process’ 1/0,
when the interrupt handler has finished, it puts the interrupted thread back in the
state it was in before the interrupt. If, however, the process is interested in the in-
terrupt, such as the arrival of a page necded by one of the process’ threads, the in-
terrupted thread is not restarted. Instead, the interrupted thread is suspended, and
the run-time system is started on that virtual CPU, with the state of the interrupted
thread on the stack. It is then up to the run-time system to decide which thread to
schedule on that CPU: the interrupted one, the newly ready one, or some third
choice.

An objection to scheduler activations is the fundamental reliance on upcalls, a
concept that violates the structure inherent in any layered system. Normally, layer
n offers certarn services that layer n + 1 can call on, but layer # may not call pro-
cedures in layer n + 1. Upcalls do not follow this fundamental principle.

2.2.8 Pop-Up Threads

Threads are frequently useful in distributed systems. An important example is
how incoming messages, for example requests for service, are handled. The tradi-
tional approach is to have a process or thread that is blocked on a receive system

SEC. 22 THREADS 113

call waiting for an incoming message. When a message arrives, it accepts the
message, unpacks it, examines the contents, and processes it.

However, a completely different approach is also possible, in which the
arrival of a message causes the system to create a new thread to handle the mes-
sage. Such a thread is called a pop-up thread and is illustrated in Fig. 2-18. A
key advantage of pop-up threads is that since they are brand new, they do not have
any history—registers, stack, whatever—that must be restored. Each one starts out
fresh and each one is identical to all the others. This makes it possible to create
such a thread quickly. The new thread is given the incoming message to process.
The result of using pop-up threads is that the latency between message arrival and
the start of processing can be made very short.

Pop-up thread
Process created to handle

L incoming message
Existing thread

\
X

L

Incoming message P

Network

(@) (b)

Figure 2-18. Creation of a new thread when a message arrives. (a) Before the
message arrives. (b) After the message arrives.

Some advance planning is neecded when pop-up threads are used. For ex-
ample, in which process does the thread run? If the system supports threads run-
ning in the kemel’s context, the thread may run there (which is why we have not
shown the kernel in Fig. 2-18). Having the pop-up thread run in kernel space is
usually easier and faster than putting it in user space. Also, a pop-up thread in ker-
nel space can easily access all the kernel’s tables and the I/O devices, which may
be needed for interrupt processing. On the other hand, a buggy kemel thread can
do more damage than a buggy user thread. For example, if it runs too long and
there is no way to preempt it, incoming data may be lost.

114 PROCESSES AND THREADS CHAP. 2

2.2.9 Making Single-Threaded Code Multithreaded

Many existing programs were written for single-threaded processes. Convert-
ing these to multithreading is much trickier than it may at first appear. Below we
will examine just a few of the pitfalls.

As a start, the code of a thread normally consists of multiple procedures, just
like a process. These may have local variables, global variables, and parameters.
Local variables and parameters do not cause any trouble, but variables that are
global to a thread but not global to the entire program are a problem. These are
variables that are global in the sense that many procedures within the thread use
them (as they might use any global variable), but other threads should logically
leave them alone.

As an example, consider the errno variable maintained by UNIX. When a
process (or a thread) makes a system call that fails, the error code is put into
errino. In Fig. 2-19, thread 1 executes the system call access to find out if it has
permission to access a certain file. The operating system returns the answer in the
global variable errio. After control has returned to thread 1, but before it has a
chance to read errio, the scheduler decides that thread 1 has had enough CPU
time for the moment and decides to switch to thread 2. Thread 2 executes an
open call that fails, which causes errio to be overwritten and thread 1’s access
code to be lost forever. When thread 1 starts up later, it will read the wrong value
and behave incorrectly.

Thread 1 Thread 2

Access (errno set)

¢

—+— Time

1

Open (ermo overwiitten)

j

Errno inspected

Figure 2-19. Conflicts between threads over the use of a global variable.

Various solutions to this problem are possible. One is to prohibit global vari-
ables altogether. However worthy this ideal may be, it conflicts with much exist-
ing software. Another is to assign each thread its own private global variables, as
shown in Fig. 2-20. In this way, each thread has its own private copy of errno and
other global variables, so conflicts are avoided. In effect, this decision creates a

SEC. 2.2 THREADS 118

new scoping level, variables visible to all the procedures of a thread, in addition to
the existing scoping levels of variables visible only to one procedure and variables
visible everywhere in the program.

Thread 1's
code

Thread 2's
code

Thread 1's
stack ~

Thread 2's
e stack

Thread 1's
globals

Thread 2's
globals

Figure 2-20. Threads can have private global vanables.

Accessing the private global variables is a bit tricky, however, since most pro-
gramming languages have a way of expressing local variables and global vari-
ables, but not intermediate forms. It is possible to allocate a chunk of memory for
the globals and pass it to each procedure in the thread as an extra parameter.
While hardly an elegant solution, it works.

Alternatively, new library procedures can be introduced to create, set, and
read these thread-wide global variables. The first call might look like this:

create_global("bufptr");

It allocates storage for a pointer called bufptr on the heap or in a special storage
area reserved for the calling thread. No matter where the storage is allocated,
only the calling thread has access to the global variable. If another thread creates
a global variable with the same name, it gets a different storage location that does
not conflict with the existing one.

Two calls are necded to access global variables: one for writing them and the
other for reading them. For writing, something like

set_global("bufptr’, &buf);

will do. It stores the value of a pointer in the storage location previously created
by the call to create_global. To read a global variable, the call might look like

bufptr = read_global("bufptr");

It returns the address stored in the global variable, so its data can be accessed.

116 PROCESSES AND THREADS CHAP. 2

The next problem turning a single-threaded program into a multithreaded pro-
gram is that many library procedures are not reentrant. That is, they were not de-
signed to have a second call made to any given procedure while a previous call
has not yet finished. For example, sending a message over the network may well
be programmed to assemble the message in a fixed buffer within the library, then
to trap to the kernel to send it. What happens if one thread has assembled its mes-
sage in the buffer, then a clock interrupt forces a switch to a second thread that
immediately overwrites the buffer with its own message?

Similarly, memory allocation procedures, for example malloc in UNIX, main-
tain crucial tables about memory usage, for example, a linked list of available
chunks of memory. While malloc is busy updating these lists, they may tem-
porarily be in an inconsistent state, with pointers that point nowhere. If a thread
switch occurs while the tables are inconsistent and a new call comes in from a dif-
ferent thread, an invalid pointer may be used, leading to a program crash. Fixing
all these problems effectively means rewriting the entire library. Doing so is a
nontrivial activity.

A different solution is to provide each procedure with a jacket that sets a bit to
mark the library as in use. Any attempt for another thread to use a library proce-
dure while a previous call has not yet completed is blocked. Although this ap-
proach can be made to work, it greatly eliminates potential parallelism.

Next, consider signals. Some signals are logically thread specific, whereas
others are not. For example, if a thread calls alarm, it makes sense for the re-
sulting signal to go to the threcad that made the call. Ilowever, when threads are
implemented entirely in user space, the kernel does not even know about threads
and can hardly direct the signal to the right one. An additional complication oc-
curs if a process may only have one alarm pending at a time and several threads
call alarm independently.

Other signals, such as keyboard interrupt, are not thread specific. Who should
catch them? One designated thread? All the threads? A newly created pop-up
thread? Furthermore, what happens if one thread changes the signal handlers
without telling other threads? And what happens if one thread wants to catch a
particular signal (say, the user hitting CTRL-C), and another thread wants this sig-
nal to terminate the process? This situation can arise if one or more threads run
standard library procedures and others are user-written. Clearly, these wishes are
incompatible. In general, signals are difficult enough to manage in a single-
threaded environment. Going to a multithreaded environment does not make them
any easier to handle.

One last problem inwoduced by threads is stack management. In many sys-
tems, when a process’ stack overflows, the kernel just provides that process with
more stack automatically. When a process has multiple threads, it must also have
multiple stacks. If the kernel is not aware of all these stacks, it cannot grow them
automatically upon stack fault. In fact, it may not even realize that a memory
fault is related to the growth of some thread’s stack.

SEC. 22 THREADS 117

These problems are certainly not insurmountable, but they do show that just
introducing threads into an existing system without a fairly substantial system
redesign is not going to work at all. The semantics of system calls may have to be
redefined and libraries have to be rewritten, at the very least. And all of these
things must be done in such a way as to remain backward compatible with exist-
ing programs for the limiting case of a process with only one thread. For addi-
tional information about threads, see (Hauser et al., 1993; and Marsh et al., 1991).

2.3 INTERPROCESS COMMUNICATION

Processes frequently need to communicate with other processes. For example,
in a shell pipeline, the output of the first process must be passed to the second
process, and so on down the line. Thus there is a need for communication between
processes, preferably in a well-swuctured way not using interrupts. In the follow-
ing sections we will look at some of the issues related to this InterProcess Com-
munication, or IPC.

Very briefly, there are three issues here. The first was alluded to above: how
one process can pass information to another. The second has to do with making
sure two or more processes do not get in each other’s way, for example, two proc-
esses in an airline reservation system each trying to grab the last seat on a plane
for a different customer. The third concerns proper sequencing when dependen-
ciecs are present: if process A produces data and process B prints them, B has to
wait until A has produced some data before starting to print. We will examine all
three of these issues starting in the next section.

It is also important to mention that two of these issues apply equally well to
threads. The first one—passing information—is easy for threads since they share a
common address space (threads in different address spaces that need to communi-
cate fall under the heading of communicating processes). However, the other
two—keeping out of each other’s hair and proper sequencing—apply equally well
to threads. The same problems exist and the same solutions apply. Below we will
discuss the problem in the context of processes, but please keep in mind that the
same problems and solutions also apply to threads.

2.3.1 Race Conditions

In some operating systems, processes that are working together may share
some common storage that each one can read and write. The shared storage may
be in main memory (possibly in a kernel data structure) or it may be a shared file;
the location of the shared